Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.6835
Cited By
Gaussian Processes for Big Data
26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gaussian Processes for Big Data"
50 / 604 papers shown
Title
Uncertainty Quantification and Experimental Design for Large-Scale Linear Inverse Problems under Gaussian Process Priors
Cédric Travelletti
D. Ginsbourger
N. Linde
70
4
0
08 Sep 2021
Large-Scale Learning with Fourier Features and Tensor Decompositions
Frederiek Wesel
Kim Batselier
56
11
0
03 Sep 2021
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
99
55
0
20 Aug 2021
PI3NN: Out-of-distribution-aware prediction intervals from three neural networks
Si-Yuan Liu
Pei Zhang
Dan Lu
Guannan Zhang
OODD
65
10
0
05 Aug 2021
Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated Failure Time Models
Zhiliang Wu
Yinchong Yang
Peter A. Fasching
Volker Tresp
BDL
73
10
0
26 Jul 2021
Subset-of-Data Variational Inference for Deep Gaussian-Processes Regression
Ayush Jain
P. K. Srijith
Mohammad Emtiyaz Khan
BDL
GP
45
0
0
17 Jul 2021
Input Dependent Sparse Gaussian Processes
B. Jafrasteh
Carlos Villacampa-Calvo
Daniel Hernández-Lobato
UQCV
53
5
0
15 Jul 2021
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
167
83
0
09 Jul 2021
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
BDL
51
18
0
08 Jul 2021
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
Jacob R. Gardner
122
24
0
01 Jul 2021
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
82
26
0
26 Jun 2021
Deep Gaussian Processes: A Survey
Kalvik Jakkala
AI4CE
GP
BDL
78
20
0
21 Jun 2021
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Pashupati Hegde
Çağatay Yıldız
Harri Lähdesmäki
Samuel Kaski
Markus Heinonen
88
16
0
21 Jun 2021
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Will Tebbutt
Arno Solin
Richard Turner
56
8
0
18 Jun 2021
Probabilistic DAG Search
Julia Grosse
Cheng Zhang
Philipp Hennig
48
4
0
16 Jun 2021
SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes
Sanyam Kapoor
Marc Finzi
Ke Alexander Wang
A. Wilson
74
12
0
12 Jun 2021
Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition
Shengyang Sun
Jiaxin Shi
A. Wilson
Roger C. Grosse
BDL
31
7
0
10 Jun 2021
GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data
Jens Petersen
Gregor Koehler
David Zimmerer
Hyunjin Park
Paul F. Jäger
Klaus H. Maier-Hein
BDL
AI4TS
71
3
0
09 Jun 2021
Deep Probabilistic Time Series Forecasting using Augmented Recurrent Input for Dynamic Systems
Haitao Liu
Changjun Liu
Xiaomo Jiang
Xudong Chen
Shuhua Yang
Xiaofang Wang
BDL
AI4TS
102
2
0
03 Jun 2021
Connections and Equivalences between the Nyström Method and Sparse Variational Gaussian Processes
Veit Wild
Motonobu Kanagawa
Dino Sejdinovic
81
16
0
02 Jun 2021
Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Network
Rui Meng
Herbert Lee
K. Bouchard
46
2
0
01 Jun 2021
Quantifying Predictive Uncertainty in Medical Image Analysis with Deep Kernel Learning
Zhiliang Wu
Yinchong Yang
Jindong Gu
Volker Tresp
UQCV
MedIm
50
9
0
01 Jun 2021
Early Detection of COVID-19 Hotspots Using Spatio-Temporal Data
Shixiang Zhu
Alexander W. Bukharin
Liyan Xie
Khurram Yamin
Shihao Yang
P. Keskinocak
Yao Xie
57
8
0
31 May 2021
Model Selection for Production System via Automated Online Experiments
Zhenwen Dai
Praveen Chandar
G. Fazelnia
Ben Carterette
M. Lalmas
68
4
0
27 May 2021
Scalable Cross Validation Losses for Gaussian Process Models
M. Jankowiak
Geoff Pleiss
67
6
0
24 May 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
139
134
0
14 May 2021
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Vincent Dutordoir
J. Hensman
Mark van der Wilk
Carl Henrik Ek
Zoubin Ghahramani
N. Durrande
BDL
UQCV
106
31
0
10 May 2021
Grey-box models for wave loading prediction
D. J. Pitchforth
T. Rogers
U. T. Tygesen
E. Cross
58
33
0
10 May 2021
Distributional Gaussian Process Layers for Outlier Detection in Image Segmentation
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
38
5
0
28 Apr 2021
Mixtures of Gaussian Processes for regression under multiple prior distributions
Sarem Seitz
15
1
0
19 Apr 2021
Deep Gaussian Processes for Biogeophysical Parameter Retrieval and Model Inversion
D. Svendsen
Pablo Morales-Álvarez
A. Ruescas
Rafael Molina
Gustau Camps-Valls
141
30
0
16 Apr 2021
Sequential Deconfounding for Causal Inference with Unobserved Confounders
Tobias Hatt
Stefan Feuerriegel
CML
97
29
0
16 Apr 2021
Uncertainty-aware Remaining Useful Life predictor
Luca Biggio
Alexander Wieland
M. A. Chao
I. Kastanis
Olga Fink
AI4CE
37
7
0
08 Apr 2021
High-Dimensional Bayesian Optimization with Multi-Task Learning for RocksDB
Sami Alabed
Eiko Yoneki
65
18
0
30 Mar 2021
Sparse Algorithms for Markovian Gaussian Processes
William J. Wilkinson
Arno Solin
Vincent Adam
62
12
0
19 Mar 2021
Discovery of Physics and Characterization of Microstructure from Data with Bayesian Hidden Physics Models
Steven Atkinson
Yiming Zhang
Liping Wang
AI4CE
23
0
0
12 Mar 2021
On MCMC for variationally sparse Gaussian processes: A pseudo-marginal approach
Karla Monterrubio-Gómez
S. Wade
56
2
0
04 Mar 2021
Kernel Interpolation for Scalable Online Gaussian Processes
Samuel Stanton
Wesley J. Maddox
Ian A. Delbridge
A. Wilson
GP
65
30
0
02 Mar 2021
Generative Particle Variational Inference via Estimation of Functional Gradients
Neale Ratzlaff
Qinxun Bai
Fuxin Li
Wenyuan Xu
BDL
DRL
123
0
0
01 Mar 2021
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu
Andrew C. Miller
Lauren Anderson
Geoff Pleiss
David M. Blei
John P. Cunningham
73
9
0
28 Feb 2021
Highly Efficient Representation and Active Learning Framework and Its Application to Imbalanced Medical Image Classification
Heng Hao
H. Moon
Sima Didari
J. Woo
P. Bangert
AI4TS
35
0
0
25 Feb 2021
Healing Products of Gaussian Processes
Samuel N. Cohen
R. Mbuvha
T. Marwala
M. Deisenroth
GP
47
0
0
14 Feb 2021
Bias-Free Scalable Gaussian Processes via Randomized Truncations
Andres Potapczynski
Luhuan Wu
D. Biderman
Geoff Pleiss
John P. Cunningham
84
20
0
12 Feb 2021
Structure-preserving Gaussian Process Dynamics
K. Ensinger
Friedrich Solowjow
Sebastian Ziesche
Michael Tiemann
Sebastian Trimpe
73
9
0
02 Feb 2021
Gaussian Experts Selection using Graphical Models
Hamed Jalali
Martin Pawelczyk
Gjerji Kasneci
68
3
0
02 Feb 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
164
52
0
27 Dec 2020
Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior
Anh Tong
Toan M. Tran
Hung Bui
Jaesik Choi
58
3
0
21 Dec 2020
Are we Forgetting about Compositional Optimisers in Bayesian Optimisation?
Antoine Grosnit
Alexander I. Cowen-Rivers
Rasul Tutunov
Ryan-Rhys Griffiths
Jun Wang
Haitham Bou-Ammar
105
14
0
15 Dec 2020
A unified framework for closed-form nonparametric regression, classification, preference and mixed problems with Skew Gaussian Processes
A. Benavoli
Dario Azzimonti
Dario Piga
67
15
0
12 Dec 2020
Bayesian Graph Neural Networks for Molecular Property Prediction
George Lamb
Brooks Paige
75
12
0
25 Nov 2020
Previous
1
2
3
...
5
6
7
...
11
12
13
Next