ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.6835
  4. Cited By
Gaussian Processes for Big Data

Gaussian Processes for Big Data

26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
    GP
ArXiv (abs)PDFHTML

Papers citing "Gaussian Processes for Big Data"

50 / 604 papers shown
Title
PAGP: A physics-assisted Gaussian process framework with active learning
  for forward and inverse problems of partial differential equations
PAGP: A physics-assisted Gaussian process framework with active learning for forward and inverse problems of partial differential equations
Jiahao Zhang
Shiqi Zhang
Guang Lin
83
3
0
06 Apr 2022
Hybrid Transfer in Deep Reinforcement Learning for Ads Allocation
Hybrid Transfer in Deep Reinforcement Learning for Ads Allocation
Zehua Wang
Guogang Liao
Xiaowen Shi
Xiaoxu Wu
Wei Shen
Bingqin Zhu
Yongkang Wang
Xingxing Wang
Dong Wang
54
5
0
02 Apr 2022
Safe Active Learning for Multi-Output Gaussian Processes
Safe Active Learning for Multi-Output Gaussian Processes
Cen-You Li
Barbara Rakitsch
Christoph Zimmer
UQCV
136
18
0
28 Mar 2022
Accelerating Bayesian Optimization for Biological Sequence Design with
  Denoising Autoencoders
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders
Samuel Stanton
Wesley J. Maddox
Nate Gruver
Phillip M. Maffettone
E. Delaney
Peyton Greenside
A. Wilson
BDL
77
98
0
23 Mar 2022
Fully-probabilistic Terrain Modelling with Stochastic Variational
  Gaussian Process Maps
Fully-probabilistic Terrain Modelling with Stochastic Variational Gaussian Process Maps
Ignacio Torroba
Christopher Iliffe Sprague
John Folkesson
53
1
0
21 Mar 2022
Learning Personalized Item-to-Item Recommendation Metric via Implicit
  Feedback
Learning Personalized Item-to-Item Recommendation Metric via Implicit Feedback
T. Hoang
Anoop Deoras
Tong Zhao
Jin Li
George Karypis
FedML
62
5
0
18 Mar 2022
Fully Decentralized, Scalable Gaussian Processes for Multi-Agent
  Federated Learning
Fully Decentralized, Scalable Gaussian Processes for Multi-Agent Federated Learning
George P. Kontoudis
D. Stilwell
FedML
84
8
0
06 Mar 2022
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian
  Processes
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
Felix Jimenez
Matthias Katzfuss
71
10
0
02 Mar 2022
Learning Conditional Variational Autoencoders with Missing Covariates
Learning Conditional Variational Autoencoders with Missing Covariates
S. Ramchandran
Gleb Tikhonov
Otto Lönnroth
Pekka Tiikkainen
Harri Lähdesmäki
CML
72
19
0
02 Mar 2022
Video is All You Need: Attacking PPG-based Biometric Authentication
Video is All You Need: Attacking PPG-based Biometric Authentication
Lin Li
Chao Chen
Lei Pan
Jun Zhang
Yang Xiang
AAML
42
13
0
02 Mar 2022
Generalised Gaussian Process Latent Variable Models (GPLVM) with
  Stochastic Variational Inference
Generalised Gaussian Process Latent Variable Models (GPLVM) with Stochastic Variational Inference
V. Lalchand
Aditya Ravuri
Neil D. Lawrence
GPVLM
34
6
0
25 Feb 2022
Learning Multi-Task Gaussian Process Over Heterogeneous Input Domains
Learning Multi-Task Gaussian Process Over Heterogeneous Input Domains
Haitao Liu
Kai Wu
Yew-Soon Ong
Chao Bian
Xiaomo Jiang
Xiaofang Wang
80
8
0
25 Feb 2022
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
D. Long
Ziyi Wang
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
95
15
0
24 Feb 2022
Partitioned Variational Inference: A Framework for Probabilistic
  Federated Learning
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard Turner
FedML
65
14
0
24 Feb 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCVBDL
153
58
0
23 Feb 2022
Adaptive Cholesky Gaussian Processes
Adaptive Cholesky Gaussian Processes
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
95
3
0
22 Feb 2022
Improved Convergence Rates for Sparse Approximation Methods in
  Kernel-Based Learning
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
Sattar Vakili
Jonathan Scarlett
Da-shan Shiu
A. Bernacchia
90
19
0
08 Feb 2022
Theoretical characterization of uncertainty in high-dimensional linear
  classification
Theoretical characterization of uncertainty in high-dimensional linear classification
Lucas Clarté
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
91
21
0
07 Feb 2022
Incorporating Sum Constraints into Multitask Gaussian Processes
Incorporating Sum Constraints into Multitask Gaussian Processes
Philipp Pilar
Carl Jidling
Thomas B. Schon
Niklas Wahlström
TPM
58
3
0
03 Feb 2022
Variational Nearest Neighbor Gaussian Process
Variational Nearest Neighbor Gaussian Process
Luhuan Wu
Geoff Pleiss
John P. Cunningham
BDL
100
15
0
03 Feb 2022
Giga-scale Kernel Matrix Vector Multiplication on GPU
Giga-scale Kernel Matrix Vector Multiplication on GPU
Robert Hu
Siu Lun Chau
Dino Sejdinovic
J. Glaunès
115
2
0
02 Feb 2022
Local Latent Space Bayesian Optimization over Structured Inputs
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
Haydn Thomas Jones
Juston Moore
Matt J. Kusner
John Bradshaw
Jacob R. Gardner
BDL
120
72
0
28 Jan 2022
Online Time Series Anomaly Detection with State Space Gaussian Processes
Online Time Series Anomaly Detection with State Space Gaussian Processes
Christian Bock
Franccois-Xavier Aubet
Jan Gasthaus
Andrey Kan
Ming Chen
Laurent Callot
AI4TS
67
8
0
18 Jan 2022
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
Luigi Carratino
Ernesto De Vito
Lorenzo Rosasco
61
13
0
17 Jan 2022
When are Iterative Gaussian Processes Reliably Accurate?
When are Iterative Gaussian Processes Reliably Accurate?
Wesley J. Maddox
Sanyam Kapoor
A. Wilson
74
10
0
31 Dec 2021
Improving Robustness and Uncertainty Modelling in Neural Ordinary
  Differential Equations
Improving Robustness and Uncertainty Modelling in Neural Ordinary Differential Equations
Srinivas Anumasa
P. K. Srijith
OODUQCVBDL
81
11
0
23 Dec 2021
Correlated Product of Experts for Sparse Gaussian Process Regression
Correlated Product of Experts for Sparse Gaussian Process Regression
Manuel Schürch
Dario Azzimonti
A. Benavoli
Marco Zaffalon
43
12
0
17 Dec 2021
Comparing Machine Learning and Interpolation Methods for Loop-Level
  Calculations
Comparing Machine Learning and Interpolation Methods for Loop-Level Calculations
Ibrahim Chahrour
J. Wells
93
12
0
29 Nov 2021
Federated Gaussian Process: Convergence, Automatic Personalization and
  Multi-fidelity Modeling
Federated Gaussian Process: Convergence, Automatic Personalization and Multi-fidelity Modeling
Xubo Yue
Raed Al Kontar
FedML
138
9
0
28 Nov 2021
Bayesian Learning via Neural Schrödinger-Föllmer Flows
Bayesian Learning via Neural Schrödinger-Föllmer Flows
Francisco Vargas
Andrius Ovsianas
David Fernandes
Mark Girolami
Neil D. Lawrence
Nikolas Nusken
BDL
150
49
0
20 Nov 2021
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent:
  Convergence Guarantees and Empirical Benefits
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen
Lili Zheng
Raed Al Kontar
Garvesh Raskutti
86
3
0
19 Nov 2021
BOiLS: Bayesian Optimisation for Logic Synthesis
BOiLS: Bayesian Optimisation for Logic Synthesis
Antoine Grosnit
C. Malherbe
Rasul Tutunov
Xingchen Wan
Jun Wang
H. Ammar
113
32
0
11 Nov 2021
Searching in the Forest for Local Bayesian Optimization
Searching in the Forest for Local Bayesian Optimization
Difan Deng
Marius Lindauer
40
2
0
10 Nov 2021
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional
  Gaussian Processes
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional Gaussian Processes
Hugh Dance
Brooks Paige
GP
74
10
0
08 Nov 2021
Dual Parameterization of Sparse Variational Gaussian Processes
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
97
23
0
05 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
80
35
0
02 Nov 2021
Aligned Multi-Task Gaussian Process
Aligned Multi-Task Gaussian Process
O. Mikheeva
Ieva Kazlauskaite
Adam Hartshorne
Hedvig Kjellström
Carl Henrik Ek
Neill D. F. Campbell
AI4TS
69
2
0
29 Oct 2021
Conditioning Sparse Variational Gaussian Processes for Online
  Decision-making
Conditioning Sparse Variational Gaussian Processes for Online Decision-making
Wesley J. Maddox
Samuel Stanton
A. Wilson
81
32
0
28 Oct 2021
Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge
  Independent Projected Kernels
Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels
M. Hutchinson
Alexander Terenin
Viacheslav Borovitskiy
So Takao
Yee Whye Teh
M. Deisenroth
78
22
0
27 Oct 2021
Modular Gaussian Processes for Transfer Learning
Modular Gaussian Processes for Transfer Learning
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
46
4
0
26 Oct 2021
Variational Gaussian Processes: A Functional Analysis View
Variational Gaussian Processes: A Functional Analysis View
Veit Wild
George Wynne
GP
80
5
0
25 Oct 2021
Variational Bayesian Approximation of Inverse Problems using Sparse
  Precision Matrices
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
91
23
0
22 Oct 2021
Function-space Inference with Sparse Implicit Processes
Function-space Inference with Sparse Implicit Processes
Simón Rodríguez Santana
B. Zaldívar
Daniel Hernández-Lobato
63
12
0
14 Oct 2021
Nonnegative spatial factorization
Nonnegative spatial factorization
F. W. Townes
Barbara E. Engelhardt
42
11
0
12 Oct 2021
Scaling Bayesian Optimization With Game Theory
Scaling Bayesian Optimization With Game Theory
L. Mathesen
G. Pedrielli
R. L. Smith
93
1
0
07 Oct 2021
Non-stationary Gaussian process discriminant analysis with variable
  selection for high-dimensional functional data
Non-stationary Gaussian process discriminant analysis with variable selection for high-dimensional functional data
Weichang Yu
S. Wade
H. Bondell
Lamiae Azizi
46
4
0
29 Sep 2021
Gaussian Processes to speed up MCMC with automatic
  exploratory-exploitation effect
Gaussian Processes to speed up MCMC with automatic exploratory-exploitation effect
A. Benavoli
J. Wyse
Arthur J. White
GP
20
0
0
28 Sep 2021
Molecular Energy Learning Using Alternative Blackbox Matrix-Matrix
  Multiplication Algorithm for Exact Gaussian Process
Molecular Energy Learning Using Alternative Blackbox Matrix-Matrix Multiplication Algorithm for Exact Gaussian Process
Jiace Sun
Lixue Cheng
Thomas F. Miller
59
3
0
20 Sep 2021
Scalable Multi-Task Gaussian Processes with Neural Embedding of
  Coregionalization
Scalable Multi-Task Gaussian Processes with Neural Embedding of Coregionalization
Haitao Liu
Jiaqi Ding
Xinyu Xie
Xiaomo Jiang
Yusong Zhao
Xiaofang Wang
BDL
62
17
0
20 Sep 2021
Self-explaining variational posterior distributions for Gaussian Process
  models
Self-explaining variational posterior distributions for Gaussian Process models
Sarem Seitz
BDL
31
0
0
08 Sep 2021
Previous
123456...111213
Next