ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.09600
11
18

Exploring Prediction Uncertainty in Machine Translation Quality Estimation

30 June 2016
Daniel Beck
Lucia Specia
Trevor Cohn
    UQLM
ArXivPDFHTML
Abstract

Machine Translation Quality Estimation is a notoriously difficult task, which lessens its usefulness in real-world translation environments. Such scenarios can be improved if quality predictions are accompanied by a measure of uncertainty. However, models in this task are traditionally evaluated only in terms of point estimate metrics, which do not take prediction uncertainty into account. We investigate probabilistic methods for Quality Estimation that can provide well-calibrated uncertainty estimates and evaluate them in terms of their full posterior predictive distributions. We also show how this posterior information can be useful in an asymmetric risk scenario, which aims to capture typical situations in translation workflows.

View on arXiv
Comments on this paper