ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.07066
16
25

A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation

23 May 2016
T. Bui
Josiah Yan
Richard Turner
ArXivPDFHTML
Abstract

Gaussian processes (GPs) are flexible distributions over functions that enable high-level assumptions about unknown functions to be encoded in a parsimonious, flexible and general way. Although elegant, the application of GPs is limited by computational and analytical intractabilities that arise when data are sufficiently numerous or when employing non-Gaussian models. Consequently, a wealth of GP approximation schemes have been developed over the last 15 years to address these key limitations. Many of these schemes employ a small set of pseudo data points to summarise the actual data. In this paper, we develop a new pseudo-point approximation framework using Power Expectation Propagation (Power EP) that unifies a large number of these pseudo-point approximations. Unlike much of the previous venerable work in this area, the new framework is built on standard methods for approximate inference (variational free-energy, EP and Power EP methods) rather than employing approximations to the probabilistic generative model itself. In this way, all of approximation is performed at `inference time' rather than at `modelling time' resolving awkward philosophical and empirical questions that trouble previous approaches. Crucially, we demonstrate that the new framework includes new pseudo-point approximation methods that outperform current approaches on regression and classification tasks.

View on arXiv
Comments on this paper