ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.7051
  4. Cited By
Stochastic Variational Inference

Stochastic Variational Inference

29 June 2012
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
    BDL
ArXivPDFHTML

Papers citing "Stochastic Variational Inference"

50 / 1,065 papers shown
Title
Variational Inference for Semiparametric Bayesian Novelty Detection in
  Large Datasets
Variational Inference for Semiparametric Bayesian Novelty Detection in Large Datasets
L. Benedetti
Eric Boniardi
Leonardo Chiani
Jacopo Ghirri
Marta Mastropietro
A. Cappozzo
Francesco Denti
32
0
0
04 Dec 2022
High-dimensional density estimation with tensorizing flow
High-dimensional density estimation with tensorizing flow
Yinuo Ren
Hongli Zhao
Y. Khoo
Lexing Ying
8
9
0
01 Dec 2022
Are you using test log-likelihood correctly?
Are you using test log-likelihood correctly?
Sameer K. Deshpande
Soumya K. Ghosh
Tin D. Nguyen
Tamara Broderick
34
7
0
01 Dec 2022
Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection
  Tasks
Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks
Neil Band
Tim G. J. Rudner
Qixuan Feng
Angelos Filos
Zachary Nado
Michael W. Dusenberry
Ghassen Jerfel
Dustin Tran
Y. Gal
OOD
UQCV
BDL
29
50
0
23 Nov 2022
Predicting Biomedical Interactions with Probabilistic Model Selection
  for Graph Neural Networks
Predicting Biomedical Interactions with Probabilistic Model Selection for Graph Neural Networks
K. Kishan
Rui Li
Paribesh Regmi
Anne R. Haake
14
1
0
22 Nov 2022
Bayesian Learning for Neural Networks: an algorithmic survey
Bayesian Learning for Neural Networks: an algorithmic survey
M. Magris
Alexandros Iosifidis
BDL
DRL
35
68
0
21 Nov 2022
Orthogonal Polynomials Approximation Algorithm (OPAA):a functional
  analytic approach to estimating probability densities
Orthogonal Polynomials Approximation Algorithm (OPAA):a functional analytic approach to estimating probability densities
Lilian W. Bialokozowicz
TPM
28
0
0
16 Nov 2022
Bayesian Reconstruction and Differential Testing of Excised mRNA
Bayesian Reconstruction and Differential Testing of Excised mRNA
Marjan Hosseini
Devin J. McConnell
Derek Aguiar
14
0
0
14 Nov 2022
Regularized Rényi divergence minimization through Bregman proximal
  gradient algorithms
Regularized Rényi divergence minimization through Bregman proximal gradient algorithms
Thomas Guilmeau
Émilie Chouzenoux
Victor Elvira
37
3
0
09 Nov 2022
SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for
  Autonomous Driving
SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for Autonomous Driving
Liang Peng
Boqi Li
Wen-Hui Yu
Kailiang Yang
Wenbo Shao
Hong Wang
AAML
36
24
0
08 Nov 2022
PeSOTIF: a Challenging Visual Dataset for Perception SOTIF Problems in
  Long-tail Traffic Scenarios
PeSOTIF: a Challenging Visual Dataset for Perception SOTIF Problems in Long-tail Traffic Scenarios
Liangzu Peng
Jun Li
Wenbo Shao
Hong Wang
37
9
0
07 Nov 2022
Bayesian learning of Causal Structure and Mechanisms with GFlowNets and
  Variational Bayes
Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes
Mizu Nishikawa-Toomey
T. Deleu
Jithendaraa Subramanian
Yoshua Bengio
Laurent Charlin
BDL
CML
32
29
0
04 Nov 2022
Black-box Coreset Variational Inference
Black-box Coreset Variational Inference
Dionysis Manousakas
H. Ritter
Theofanis Karaletsos
BDL
21
4
0
04 Nov 2022
Variational Hierarchical Mixtures for Probabilistic Learning of Inverse
  Dynamics
Variational Hierarchical Mixtures for Probabilistic Learning of Inverse Dynamics
Hany Abdulsamad
Peter Nickl
Pascal Klink
Jan Peters
29
0
0
02 Nov 2022
Federated Averaging Langevin Dynamics: Toward a unified theory and new
  algorithms
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms
Vincent Plassier
Alain Durmus
Eric Moulines
FedML
21
6
0
31 Oct 2022
Manifold Gaussian Variational Bayes on the Precision Matrix
Manifold Gaussian Variational Bayes on the Precision Matrix
M. Magris
M. Shabani
Alexandros Iosifidis
37
2
0
26 Oct 2022
Intrinsic Randomness in Epidemic Modelling Beyond Statistical
  Uncertainty
Intrinsic Randomness in Epidemic Modelling Beyond Statistical Uncertainty
Matthew J. Penn
D. Laydon
Joseph Penn
C. Whittaker
Christian Morgenstern
O. Ratmann
Swapnil Mishra
Mikko S. Pakkanen
C. Donnelly
Samir Bhatt
UD
PER
14
7
0
25 Oct 2022
Spending Thinking Time Wisely: Accelerating MCTS with Virtual Expansions
Spending Thinking Time Wisely: Accelerating MCTS with Virtual Expansions
Weirui Ye
Pieter Abbeel
Yang Gao
46
5
0
23 Oct 2022
Towards Efficient Dialogue Pre-training with Transferable and
  Interpretable Latent Structure
Towards Efficient Dialogue Pre-training with Transferable and Interpretable Latent Structure
Xueliang Zhao
Lemao Liu
Tingchen Fu
Shuming Shi
Dongyan Zhao
Rui Yan
129
4
0
22 Oct 2022
Neuro-Symbolic Causal Reasoning Meets Signaling Game for Emergent
  Semantic Communications
Neuro-Symbolic Causal Reasoning Meets Signaling Game for Emergent Semantic Communications
Christo Kurisummoottil Thomas
Walid Saad
29
31
0
21 Oct 2022
ZooD: Exploiting Model Zoo for Out-of-Distribution Generalization
ZooD: Exploiting Model Zoo for Out-of-Distribution Generalization
Qishi Dong
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Tianyang Hu
Yongxin Yang
Sung-Ho Bae
Zhenguo Li
OODD
VLM
39
14
0
17 Oct 2022
Principled Pruning of Bayesian Neural Networks through Variational Free
  Energy Minimization
Principled Pruning of Bayesian Neural Networks through Variational Free Energy Minimization
Jim Beckers
Bart Van Erp
Ziyue Zhao
K. Kondrashov
Bert De Vries
AAML
21
5
0
17 Oct 2022
Joint control variate for faster black-box variational inference
Joint control variate for faster black-box variational inference
Xi Wang
Tomas Geffner
Justin Domke
BDL
DRL
19
0
0
13 Oct 2022
Fast Estimation of Bayesian State Space Models Using Amortized
  Simulation-Based Inference
Fast Estimation of Bayesian State Space Models Using Amortized Simulation-Based Inference
R. Khabibullin
S. Seleznev
28
1
0
13 Oct 2022
Dirichlet process mixture models for non-stationary data streams
Dirichlet process mixture models for non-stationary data streams
Ioar Casado
Aritz Pérez Martínez
9
0
0
13 Oct 2022
Context-aware Bayesian Mixed Multinomial Logit Model
Context-aware Bayesian Mixed Multinomial Logit Model
Miroslawa Lukawska
A. F. Jensen
Filipe Rodrigues
9
0
0
11 Oct 2022
FaDIn: Fast Discretized Inference for Hawkes Processes with General
  Parametric Kernels
FaDIn: Fast Discretized Inference for Hawkes Processes with General Parametric Kernels
Guillaume Staerman
Cédric Allain
Alexandre Gramfort
Thomas Moreau
21
5
0
10 Oct 2022
Scaling up Stochastic Gradient Descent for Non-convex Optimisation
Scaling up Stochastic Gradient Descent for Non-convex Optimisation
S. Mohamad
H. Alamri
A. Bouchachia
50
3
0
06 Oct 2022
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
134
77
0
02 Oct 2022
Bayesian Q-learning With Imperfect Expert Demonstrations
Bayesian Q-learning With Imperfect Expert Demonstrations
Fengdi Che
Xiru Zhu
Doina Precup
D. Meger
Gregory Dudek
19
2
0
01 Oct 2022
A Unified Perspective on Natural Gradient Variational Inference with
  Gaussian Mixture Models
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
Oleg Arenz
Philipp Dahlinger
Zihan Ye
Michael Volpp
Gerhard Neumann
39
15
0
23 Sep 2022
Amortized Variational Inference: A Systematic Review
Amortized Variational Inference: A Systematic Review
Ankush Ganguly
Sanjana Jain
Ukrit Watchareeruetai
28
14
0
22 Sep 2022
Variational Inference for Infinitely Deep Neural Networks
Variational Inference for Infinitely Deep Neural Networks
Achille Nazaret
David M. Blei
BDL
25
11
0
21 Sep 2022
Fair Inference for Discrete Latent Variable Models
Fair Inference for Discrete Latent Variable Models
Rashidul Islam
Shimei Pan
James R. Foulds
FaML
46
1
0
15 Sep 2022
Deep Variational Free Energy Approach to Dense Hydrogen
Deep Variational Free Energy Approach to Dense Hydrogen
H.-j. Xie
Ziqun Li
Han Wang
Linfeng Zhang
Lei Wang
35
9
0
13 Sep 2022
On the Convergence of the ELBO to Entropy Sums
On the Convergence of the ELBO to Entropy Sums
Jörg Lücke
Jan Warnken
39
3
0
07 Sep 2022
Interpretable Fake News Detection with Topic and Deep Variational Models
Interpretable Fake News Detection with Topic and Deep Variational Models
Marjan Hosseini
Alireza Javadian Sabet
Suining He
Derek Aguiar
21
20
0
04 Sep 2022
Bézier Gaussian Processes for Tall and Wide Data
Bézier Gaussian Processes for Tall and Wide Data
Martin Jørgensen
Michael A. Osborne
GP
19
2
0
01 Sep 2022
Learning Multiscale Non-stationary Causal Structures
Learning Multiscale Non-stationary Causal Structures
Gabriele DÁcunto
G. D. F. Morales
P. Bajardi
Francesco Bonchi
CML
AI4TS
43
3
0
31 Aug 2022
Compound Density Networks for Risk Prediction using Electronic Health
  Records
Compound Density Networks for Risk Prediction using Electronic Health Records
Yuxi Liu
S. Qin
Zhenhao Zhang
Wei Shao
BDL
21
9
0
02 Aug 2022
Statistical and Computational Trade-offs in Variational Inference: A
  Case Study in Inferential Model Selection
Statistical and Computational Trade-offs in Variational Inference: A Case Study in Inferential Model Selection
Kush S. Bhatia
Nikki Lijing Kuang
Yi Ma
Yixin Wang
19
6
0
22 Jul 2022
Learning inducing points and uncertainty on molecular data by scalable
  variational Gaussian processes
Learning inducing points and uncertainty on molecular data by scalable variational Gaussian processes
Mikhail Tsitsvero
Mingoo Jin
Andrey Lyalin
11
0
0
16 Jul 2022
Variational Flow Graphical Model
Variational Flow Graphical Model
Shaogang Ren
Belhal Karimi
Dingcheng Li
Ping Li
25
4
0
06 Jul 2022
Variational Neural Networks
Variational Neural Networks
Illia Oleksiienko
D. Tran
Alexandros Iosifidis
BDL
UQCV
33
8
0
04 Jul 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
29
0
0
27 Jun 2022
Neural Inverse Transform Sampler
Neural Inverse Transform Sampler
Henry Li
Y. Kluger
14
4
0
22 Jun 2022
How to Combine Variational Bayesian Networks in Federated Learning
How to Combine Variational Bayesian Networks in Federated Learning
Atahan Ozer
Kadir Burak Buldu
Abdullah Akgul
Gözde B. Ünal
FedML
25
5
0
22 Jun 2022
Bregman Power k-Means for Clustering Exponential Family Data
Bregman Power k-Means for Clustering Exponential Family Data
Adithya Vellal
Saptarshi Chakraborty
Jason Xu
28
6
0
22 Jun 2022
Bayesian non-conjugate regression via variational message passing
Bayesian non-conjugate regression via variational message passing
C. Castiglione
M. Bernardi
25
0
0
19 Jun 2022
Variable Bitrate Neural Fields
Variable Bitrate Neural Fields
Towaki Takikawa
Alex Evans
Jonathan Tremblay
Thomas Müller
M. McGuire
Alec Jacobson
Sanja Fidler
32
128
0
15 Jun 2022
Previous
123456...202122
Next