57
9

Deep Variational Free Energy Approach to Dense Hydrogen

Abstract

We developed a deep generative model-based variational free energy approach to the equations of state of dense hydrogen. We employ a normalizing flow network to model the proton Boltzmann distribution and a fermionic neural network to model the electron wave function at given proton positions. By jointly optimizing the two neural networks we reached a comparable variational free energy to the previous coupled electron-ion Monte Carlo calculation. The predicted equation of state of dense hydrogen under planetary conditions is denser than the findings of ab initio molecular dynamics calculation and empirical chemical model. Moreover, direct access to the entropy and free energy of dense hydrogen opens new opportunities in planetary modeling and high-pressure physics research.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.