Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.7051
Cited By
Stochastic Variational Inference
29 June 2012
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Variational Inference"
50 / 1,065 papers shown
Title
Identification, Interpretability, and Bayesian Word Embeddings
Adam M. Lauretig
BDL
20
11
0
02 Apr 2019
Perturbative estimation of stochastic gradients
L. Ambrogioni
Marcel van Gerven
12
0
0
31 Mar 2019
Laplace Landmark Localization
Joseph P. Robinson
Yuncheng Li
Ning Zhang
Y. Fu
Sergey Tulyakov
CVBM
22
43
0
27 Mar 2019
Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing
Hao Fu
Chunyuan Li
Xiaodong Liu
Jianfeng Gao
Asli Celikyilmaz
Lawrence Carin
ODL
27
361
0
25 Mar 2019
Deep Gaussian Processes for Multi-fidelity Modeling
Kurt Cutajar
Mark Pullin
Andreas C. Damianou
Neil D. Lawrence
Javier I. González
AI4CE
30
109
0
18 Mar 2019
Applying Probabilistic Programming to Affective Computing
Desmond C. Ong
Harold Soh
Jamil Zaki
Noah D. Goodman
27
20
0
15 Mar 2019
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Joeri Hermans
Volodimir Begy
Gilles Louppe
32
20
0
10 Mar 2019
The Variational Predictive Natural Gradient
Da Tang
Rajesh Ranganath
BDL
DRL
16
8
0
07 Mar 2019
LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models
Yuanshuo Zhou
Bradley Gram-Hansen
Tobias Kohn
Tom Rainforth
Hongseok Yang
Frank Wood
36
24
0
06 Mar 2019
Deep active subspaces - a scalable method for high-dimensional uncertainty propagation
Rohit Tripathy
Ilias Bilionis
25
12
0
27 Feb 2019
Training Variational Autoencoders with Buffered Stochastic Variational Inference
Rui Shu
Hung Bui
Jay Whang
Stefano Ermon
BDL
11
3
0
27 Feb 2019
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Vincent Dutordoir
Mark van der Wilk
A. Artemev
J. Hensman
UQCV
BDL
30
32
0
15 Feb 2019
Gaussian Mean Field Regularizes by Limiting Learned Information
Julius Kunze
Louis Kirsch
H. Ritter
David Barber
FedML
MLT
11
2
0
12 Feb 2019
A physics-aware, probabilistic machine learning framework for coarse-graining high-dimensional systems in the Small Data regime
Constantin Grigo
P. Koutsourelakis
AI4CE
21
25
0
11 Feb 2019
Manifold Optimization Assisted Gaussian Variational Approximation
Bingxin Zhou
Junbin Gao
Minh-Ngoc Tran
Richard Gerlach
19
6
0
11 Feb 2019
Radial and Directional Posteriors for Bayesian Neural Networks
Changyong Oh
Kamil Adamczewski
Mijung Park
BDL
31
20
0
07 Feb 2019
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
Lars Maaløe
Marco Fraccaro
Valentin Liévin
Ole Winther
BDL
DRL
24
213
0
06 Feb 2019
Total stochastic gradient algorithms and applications in reinforcement learning
Paavo Parmas
28
17
0
05 Feb 2019
Particle Flow Bayes' Rule
Xinshi Chen
H. Dai
Le Song
22
9
0
02 Feb 2019
Intelligent architectures for robotics: The merging of cognition and emotion
L. Pessoa
6
17
0
01 Feb 2019
Kernel embedded nonlinear observational mappings in the variational mapping particle filter
M. Pulido
P. Leeuwen
D. Posselt
29
7
0
29 Jan 2019
Learning Global Pairwise Interactions with Bayesian Neural Networks
Tianyu Cui
Pekka Marttinen
Samuel Kaski
BDL
18
17
0
24 Jan 2019
Disentangling Video with Independent Prediction
William F. Whitney
Rob Fergus
CML
CoGe
OCL
DRL
43
1
0
17 Jan 2019
Lagging Inference Networks and Posterior Collapse in Variational Autoencoders
Junxian He
Daniel M. Spokoyny
Graham Neubig
Taylor Berg-Kirkpatrick
BDL
DRL
25
272
0
16 Jan 2019
Large-Scale Joint Topic, Sentiment & User Preference Analysis for Online Reviews
Xinli Yu
Zheng Chen
Wei-Shih Yang
Xiaohua Hu
E. Yan
BDL
6
3
0
14 Jan 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
29
2
0
03 Jan 2019
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
Chunyuan Li
Ke Bai
Jianqiao Li
Guoyin Wang
Changyou Chen
Lawrence Carin
16
10
0
03 Jan 2019
A Full Probabilistic Model for Yes/No Type Crowdsourcing in Multi-Class Classification
Belen Saldias-Fuentes
P. Protopapas
K. Pichara
12
0
0
02 Jan 2019
Mixed Membership Recurrent Neural Networks
G. Fazelnia
Mark Ibrahim
C. Modarres
K. Wu
John Paisley
116
1
0
23 Dec 2018
Disentangling Latent Space for VAE by Label Relevant/Irrelevant Dimensions
Zhilin Zheng
Li Sun
CML
CoGe
DRL
18
46
0
22 Dec 2018
A Factorial Mixture Prior for Compositional Deep Generative Models
Ulrich Paquet
Sumedh Ghaisas
O. Tieleman
CoGe
12
1
0
18 Dec 2018
Bayesian Mean-parameterized Nonnegative Binary Matrix Factorization
Alberto Lumbreras
Louis Filstroff
Cédric Févotte
20
15
0
17 Dec 2018
A Tutorial on Deep Latent Variable Models of Natural Language
Yoon Kim
Sam Wiseman
Alexander M. Rush
BDL
VLM
30
42
0
17 Dec 2018
Latent Dirichlet Allocation in Generative Adversarial Networks
Lili Pan
Shen Cheng
Jian-Dong Liu
Yazhou Ren
Zenglin Xu
GAN
16
3
0
17 Dec 2018
Neural Processes Mixed-Effect Models for Deep Normative Modeling of Clinical Neuroimaging Data
S. M. Kia
A. Marquand
24
25
0
12 Dec 2018
KF-LAX: Kronecker-factored curvature estimation for control variate optimization in reinforcement learning
Mohammad Firouzi
19
0
0
11 Dec 2018
Uncertainty propagation in neural networks for sparse coding
Danil Kuzin
Olga Isupova
Lyudmila Mihaylova
BDL
UQCV
14
0
0
29 Nov 2018
Bayesian Adversarial Spheres: Bayesian Inference and Adversarial Examples in a Noiseless Setting
Artur Bekasov
Iain Murray
AAML
BDL
20
14
0
29 Nov 2018
Autoconj: Recognizing and Exploiting Conjugacy Without a Domain-Specific Language
Matthew D. Hoffman
Matthew J. Johnson
Dustin Tran
6
17
0
29 Nov 2018
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
27
55
0
27 Nov 2018
Joint Mapping and Calibration via Differentiable Sensor Fusion
Jonathan P. Chen
F. Obermeyer
V. Lyapunov
L. Gueguen
Noah D. Goodman
26
0
0
21 Nov 2018
A General Method for Amortizing Variational Filtering
Joseph Marino
Milan Cvitkovic
Yisong Yue
27
34
0
13 Nov 2018
On the Performance and Convergence of Distributed Stream Processing via Approximate Fault Tolerance
Zhinan Cheng
Qun Huang
P. Lee
11
8
0
12 Nov 2018
SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient
Aaron Mishkin
Frederik Kunstner
Didrik Nielsen
Mark Schmidt
Mohammad Emtiyaz Khan
BDL
UQCV
22
59
0
11 Nov 2018
Adapting multi-armed bandits policies to contextual bandits scenarios
David Cortes
27
32
0
11 Nov 2018
Deep Ensemble Bayesian Active Learning : Addressing the Mode Collapse issue in Monte Carlo dropout via Ensembles
Remus Pop
Patric Fulop
UQCV
27
41
0
09 Nov 2018
Wasserstein variational gradient descent: From semi-discrete optimal transport to ensemble variational inference
L. Ambrogioni
Rémi Flamary
R. Tavenard
OT
14
12
0
07 Nov 2018
DAPPER: Scaling Dynamic Author Persona Topic Model to Billion Word Corpora
S. Zee
Alice Havrileck
17
3
0
03 Nov 2018
Understanding and Comparing Scalable Gaussian Process Regression for Big Data
Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
27
24
0
03 Nov 2018
Dirichlet belief networks for topic structure learning
He Zhao
Lan Du
Wray Buntine
Mingyuan Zhou
OOD
BDL
26
42
0
02 Nov 2018
Previous
1
2
3
...
13
14
15
...
20
21
22
Next