ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.7051
  4. Cited By
Stochastic Variational Inference

Stochastic Variational Inference

29 June 2012
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
    BDL
ArXivPDFHTML

Papers citing "Stochastic Variational Inference"

50 / 1,065 papers shown
Title
Identification, Interpretability, and Bayesian Word Embeddings
Identification, Interpretability, and Bayesian Word Embeddings
Adam M. Lauretig
BDL
20
11
0
02 Apr 2019
Perturbative estimation of stochastic gradients
L. Ambrogioni
Marcel van Gerven
12
0
0
31 Mar 2019
Laplace Landmark Localization
Laplace Landmark Localization
Joseph P. Robinson
Yuncheng Li
Ning Zhang
Y. Fu
Sergey Tulyakov
CVBM
22
43
0
27 Mar 2019
Cyclical Annealing Schedule: A Simple Approach to Mitigating KL
  Vanishing
Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing
Hao Fu
Chunyuan Li
Xiaodong Liu
Jianfeng Gao
Asli Celikyilmaz
Lawrence Carin
ODL
27
361
0
25 Mar 2019
Deep Gaussian Processes for Multi-fidelity Modeling
Deep Gaussian Processes for Multi-fidelity Modeling
Kurt Cutajar
Mark Pullin
Andreas C. Damianou
Neil D. Lawrence
Javier I. González
AI4CE
30
109
0
18 Mar 2019
Applying Probabilistic Programming to Affective Computing
Applying Probabilistic Programming to Affective Computing
Desmond C. Ong
Harold Soh
Jamil Zaki
Noah D. Goodman
27
20
0
15 Mar 2019
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Joeri Hermans
Volodimir Begy
Gilles Louppe
32
20
0
10 Mar 2019
The Variational Predictive Natural Gradient
The Variational Predictive Natural Gradient
Da Tang
Rajesh Ranganath
BDL
DRL
16
8
0
07 Mar 2019
LF-PPL: A Low-Level First Order Probabilistic Programming Language for
  Non-Differentiable Models
LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models
Yuanshuo Zhou
Bradley Gram-Hansen
Tobias Kohn
Tom Rainforth
Hongseok Yang
Frank Wood
36
24
0
06 Mar 2019
Deep active subspaces - a scalable method for high-dimensional
  uncertainty propagation
Deep active subspaces - a scalable method for high-dimensional uncertainty propagation
Rohit Tripathy
Ilias Bilionis
25
12
0
27 Feb 2019
Training Variational Autoencoders with Buffered Stochastic Variational
  Inference
Training Variational Autoencoders with Buffered Stochastic Variational Inference
Rui Shu
Hung Bui
Jay Whang
Stefano Ermon
BDL
11
3
0
27 Feb 2019
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Vincent Dutordoir
Mark van der Wilk
A. Artemev
J. Hensman
UQCV
BDL
30
32
0
15 Feb 2019
Gaussian Mean Field Regularizes by Limiting Learned Information
Gaussian Mean Field Regularizes by Limiting Learned Information
Julius Kunze
Louis Kirsch
H. Ritter
David Barber
FedML
MLT
11
2
0
12 Feb 2019
A physics-aware, probabilistic machine learning framework for
  coarse-graining high-dimensional systems in the Small Data regime
A physics-aware, probabilistic machine learning framework for coarse-graining high-dimensional systems in the Small Data regime
Constantin Grigo
P. Koutsourelakis
AI4CE
21
25
0
11 Feb 2019
Manifold Optimization Assisted Gaussian Variational Approximation
Manifold Optimization Assisted Gaussian Variational Approximation
Bingxin Zhou
Junbin Gao
Minh-Ngoc Tran
Richard Gerlach
19
6
0
11 Feb 2019
Radial and Directional Posteriors for Bayesian Neural Networks
Radial and Directional Posteriors for Bayesian Neural Networks
Changyong Oh
Kamil Adamczewski
Mijung Park
BDL
31
20
0
07 Feb 2019
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
Lars Maaløe
Marco Fraccaro
Valentin Liévin
Ole Winther
BDL
DRL
24
213
0
06 Feb 2019
Total stochastic gradient algorithms and applications in reinforcement
  learning
Total stochastic gradient algorithms and applications in reinforcement learning
Paavo Parmas
28
17
0
05 Feb 2019
Particle Flow Bayes' Rule
Particle Flow Bayes' Rule
Xinshi Chen
H. Dai
Le Song
22
9
0
02 Feb 2019
Intelligent architectures for robotics: The merging of cognition and
  emotion
Intelligent architectures for robotics: The merging of cognition and emotion
L. Pessoa
6
17
0
01 Feb 2019
Kernel embedded nonlinear observational mappings in the variational
  mapping particle filter
Kernel embedded nonlinear observational mappings in the variational mapping particle filter
M. Pulido
P. Leeuwen
D. Posselt
29
7
0
29 Jan 2019
Learning Global Pairwise Interactions with Bayesian Neural Networks
Learning Global Pairwise Interactions with Bayesian Neural Networks
Tianyu Cui
Pekka Marttinen
Samuel Kaski
BDL
18
17
0
24 Jan 2019
Disentangling Video with Independent Prediction
Disentangling Video with Independent Prediction
William F. Whitney
Rob Fergus
CML
CoGe
OCL
DRL
43
1
0
17 Jan 2019
Lagging Inference Networks and Posterior Collapse in Variational
  Autoencoders
Lagging Inference Networks and Posterior Collapse in Variational Autoencoders
Junxian He
Daniel M. Spokoyny
Graham Neubig
Taylor Berg-Kirkpatrick
BDL
DRL
25
272
0
16 Jan 2019
Large-Scale Joint Topic, Sentiment & User Preference Analysis for Online
  Reviews
Large-Scale Joint Topic, Sentiment & User Preference Analysis for Online Reviews
Xinli Yu
Zheng Chen
Wei-Shih Yang
Xiaohua Hu
E. Yan
BDL
6
3
0
14 Jan 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte
  Carlo Sampler
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
29
2
0
03 Jan 2019
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
Chunyuan Li
Ke Bai
Jianqiao Li
Guoyin Wang
Changyou Chen
Lawrence Carin
16
10
0
03 Jan 2019
A Full Probabilistic Model for Yes/No Type Crowdsourcing in Multi-Class
  Classification
A Full Probabilistic Model for Yes/No Type Crowdsourcing in Multi-Class Classification
Belen Saldias-Fuentes
P. Protopapas
K. Pichara
12
0
0
02 Jan 2019
Mixed Membership Recurrent Neural Networks
Mixed Membership Recurrent Neural Networks
G. Fazelnia
Mark Ibrahim
C. Modarres
K. Wu
John Paisley
116
1
0
23 Dec 2018
Disentangling Latent Space for VAE by Label Relevant/Irrelevant
  Dimensions
Disentangling Latent Space for VAE by Label Relevant/Irrelevant Dimensions
Zhilin Zheng
Li Sun
CML
CoGe
DRL
18
46
0
22 Dec 2018
A Factorial Mixture Prior for Compositional Deep Generative Models
A Factorial Mixture Prior for Compositional Deep Generative Models
Ulrich Paquet
Sumedh Ghaisas
O. Tieleman
CoGe
12
1
0
18 Dec 2018
Bayesian Mean-parameterized Nonnegative Binary Matrix Factorization
Bayesian Mean-parameterized Nonnegative Binary Matrix Factorization
Alberto Lumbreras
Louis Filstroff
Cédric Févotte
20
15
0
17 Dec 2018
A Tutorial on Deep Latent Variable Models of Natural Language
A Tutorial on Deep Latent Variable Models of Natural Language
Yoon Kim
Sam Wiseman
Alexander M. Rush
BDL
VLM
30
42
0
17 Dec 2018
Latent Dirichlet Allocation in Generative Adversarial Networks
Latent Dirichlet Allocation in Generative Adversarial Networks
Lili Pan
Shen Cheng
Jian-Dong Liu
Yazhou Ren
Zenglin Xu
GAN
16
3
0
17 Dec 2018
Neural Processes Mixed-Effect Models for Deep Normative Modeling of
  Clinical Neuroimaging Data
Neural Processes Mixed-Effect Models for Deep Normative Modeling of Clinical Neuroimaging Data
S. M. Kia
A. Marquand
24
25
0
12 Dec 2018
KF-LAX: Kronecker-factored curvature estimation for control variate
  optimization in reinforcement learning
KF-LAX: Kronecker-factored curvature estimation for control variate optimization in reinforcement learning
Mohammad Firouzi
19
0
0
11 Dec 2018
Uncertainty propagation in neural networks for sparse coding
Uncertainty propagation in neural networks for sparse coding
Danil Kuzin
Olga Isupova
Lyudmila Mihaylova
BDL
UQCV
14
0
0
29 Nov 2018
Bayesian Adversarial Spheres: Bayesian Inference and Adversarial
  Examples in a Noiseless Setting
Bayesian Adversarial Spheres: Bayesian Inference and Adversarial Examples in a Noiseless Setting
Artur Bekasov
Iain Murray
AAML
BDL
20
14
0
29 Nov 2018
Autoconj: Recognizing and Exploiting Conjugacy Without a Domain-Specific
  Language
Autoconj: Recognizing and Exploiting Conjugacy Without a Domain-Specific Language
Matthew D. Hoffman
Matthew J. Johnson
Dustin Tran
6
17
0
29 Nov 2018
Partitioned Variational Inference: A unified framework encompassing
  federated and continual learning
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
27
55
0
27 Nov 2018
Joint Mapping and Calibration via Differentiable Sensor Fusion
Joint Mapping and Calibration via Differentiable Sensor Fusion
Jonathan P. Chen
F. Obermeyer
V. Lyapunov
L. Gueguen
Noah D. Goodman
26
0
0
21 Nov 2018
A General Method for Amortizing Variational Filtering
A General Method for Amortizing Variational Filtering
Joseph Marino
Milan Cvitkovic
Yisong Yue
27
34
0
13 Nov 2018
On the Performance and Convergence of Distributed Stream Processing via
  Approximate Fault Tolerance
On the Performance and Convergence of Distributed Stream Processing via Approximate Fault Tolerance
Zhinan Cheng
Qun Huang
P. Lee
11
8
0
12 Nov 2018
SLANG: Fast Structured Covariance Approximations for Bayesian Deep
  Learning with Natural Gradient
SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient
Aaron Mishkin
Frederik Kunstner
Didrik Nielsen
Mark Schmidt
Mohammad Emtiyaz Khan
BDL
UQCV
22
59
0
11 Nov 2018
Adapting multi-armed bandits policies to contextual bandits scenarios
Adapting multi-armed bandits policies to contextual bandits scenarios
David Cortes
27
32
0
11 Nov 2018
Deep Ensemble Bayesian Active Learning : Addressing the Mode Collapse
  issue in Monte Carlo dropout via Ensembles
Deep Ensemble Bayesian Active Learning : Addressing the Mode Collapse issue in Monte Carlo dropout via Ensembles
Remus Pop
Patric Fulop
UQCV
27
41
0
09 Nov 2018
Wasserstein variational gradient descent: From semi-discrete optimal
  transport to ensemble variational inference
Wasserstein variational gradient descent: From semi-discrete optimal transport to ensemble variational inference
L. Ambrogioni
Rémi Flamary
R. Tavenard
OT
14
12
0
07 Nov 2018
DAPPER: Scaling Dynamic Author Persona Topic Model to Billion Word
  Corpora
DAPPER: Scaling Dynamic Author Persona Topic Model to Billion Word Corpora
S. Zee
Alice Havrileck
17
3
0
03 Nov 2018
Understanding and Comparing Scalable Gaussian Process Regression for Big
  Data
Understanding and Comparing Scalable Gaussian Process Regression for Big Data
Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
27
24
0
03 Nov 2018
Dirichlet belief networks for topic structure learning
Dirichlet belief networks for topic structure learning
He Zhao
Lan Du
Wray Buntine
Mingyuan Zhou
OOD
BDL
26
42
0
02 Nov 2018
Previous
123...131415...202122
Next