ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.02603
15
20

Radial and Directional Posteriors for Bayesian Neural Networks

7 February 2019
Changyong Oh
Kamil Adamczewski
Mijung Park
    BDL
ArXivPDFHTML
Abstract

We propose a new variational family for Bayesian neural networks. We decompose the variational posterior into two components, where the radial component captures the strength of each neuron in terms of its magnitude; while the directional component captures the statistical dependencies among the weight parameters. The dependencies learned via the directional density provide better modeling performance compared to the widely-used Gaussian mean-field-type variational family. In addition, the strength of input and output neurons learned via the radial density provides a structured way to compress neural networks. Indeed, experiments show that our variational family improves predictive performance and yields compressed networks simultaneously.

View on arXiv
Comments on this paper