ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.7051
  4. Cited By
Stochastic Variational Inference

Stochastic Variational Inference

29 June 2012
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
    BDL
ArXivPDFHTML

Papers citing "Stochastic Variational Inference"

50 / 1,065 papers shown
Title
A latent topic model for mining heterogenous non-randomly missing
  electronic health records data
A latent topic model for mining heterogenous non-randomly missing electronic health records data
Yue Li
Manolis Kellis
16
1
0
01 Nov 2018
Gaussian Process Conditional Density Estimation
Gaussian Process Conditional Density Estimation
Vincent Dutordoir
Hugh Salimbeni
M. Deisenroth
J. Hensman
16
52
0
30 Oct 2018
Using Large Ensembles of Control Variates for Variational Inference
Using Large Ensembles of Control Variates for Variational Inference
Tomas Geffner
Justin Domke
BDL
14
34
0
30 Oct 2018
Semi-crowdsourced Clustering with Deep Generative Models
Semi-crowdsourced Clustering with Deep Generative Models
Yucen Luo
Tian Tian
Jiaxin Shi
Jun Zhu
Bo Zhang
20
18
0
29 Oct 2018
Variational Inference with Tail-adaptive f-Divergence
Variational Inference with Tail-adaptive f-Divergence
Dilin Wang
Hao Liu
Qiang Liu
27
55
0
29 Oct 2018
The Logoscope: a Semi-Automatic Tool for Detecting and Documenting
  French New Words
The Logoscope: a Semi-Automatic Tool for Detecting and Documenting French New Words
Ingrid Falk
D. Bernhard
Christophe Gérard
8
3
0
25 Oct 2018
Sparsemax and Relaxed Wasserstein for Topic Sparsity
Sparsemax and Relaxed Wasserstein for Topic Sparsity
Tianyi Lin
Zhibo Hu
Xin Guo
14
37
0
22 Oct 2018
Variational Noise-Contrastive Estimation
Variational Noise-Contrastive Estimation
Benjamin Rhodes
Michael U. Gutmann
BDL
DRL
9
15
0
18 Oct 2018
Metropolis-Hastings view on variational inference and adversarial
  training
Metropolis-Hastings view on variational inference and adversarial training
Kirill Neklyudov
Evgenii Egorov
Pavel Shvechikov
Dmitry Vetrov
GAN
29
13
0
16 Oct 2018
The Deep Weight Prior
The Deep Weight Prior
Andrei Atanov
Arsenii Ashukha
Kirill Struminsky
Dmitry Vetrov
Max Welling
BDL
14
37
0
16 Oct 2018
Globally Continuous and Non-Markovian Activity Analysis from Videos
Globally Continuous and Non-Markovian Activity Analysis from Videos
He Wang
C. O'Sullivan
9
24
0
11 Oct 2018
Large Scale Clustering with Variational EM for Gaussian Mixture Models
Large Scale Clustering with Variational EM for Gaussian Mixture Models
F. Hirschberger
D. Forster
Jörg Lücke
VLM
26
13
0
01 Oct 2018
Learning for Single-Shot Confidence Calibration in Deep Neural Networks
  through Stochastic Inferences
Learning for Single-Shot Confidence Calibration in Deep Neural Networks through Stochastic Inferences
Seonguk Seo
Paul Hongsuck Seo
Bohyung Han
FedML
UQCV
BDL
8
75
0
28 Sep 2018
Orthogonally Decoupled Variational Gaussian Processes
Orthogonally Decoupled Variational Gaussian Processes
Hugh Salimbeni
Ching-An Cheng
Byron Boots
M. Deisenroth
19
43
0
24 Sep 2018
Quantifying total uncertainty in physics-informed neural networks for
  solving forward and inverse stochastic problems
Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
Dongkun Zhang
Lu Lu
Ling Guo
George Karniadakis
UQCV
27
399
0
21 Sep 2018
Predictive Collective Variable Discovery with Deep Bayesian Models
Predictive Collective Variable Discovery with Deep Bayesian Models
M. Schöberl
N. Zabaras
P. Koutsourelakis
17
34
0
18 Sep 2018
Discretely Relaxing Continuous Variables for tractable Variational
  Inference
Discretely Relaxing Continuous Variables for tractable Variational Inference
Trefor W. Evans
P. Nair
BDL
55
0
0
12 Sep 2018
Non-Parametric Variational Inference with Graph Convolutional Networks
  for Gaussian Processes
Non-Parametric Variational Inference with Graph Convolutional Networks for Gaussian Processes
Linfeng Liu
Liping Liu
BDL
18
0
0
08 Sep 2018
Learning Supervised Topic Models for Classification and Regression from
  Crowds
Learning Supervised Topic Models for Classification and Regression from Crowds
Filipe Rodrigues
Mariana Lourenço
B. Ribeiro
Francisco Câmara Pereira
6
83
0
17 Aug 2018
Familia: A Configurable Topic Modeling Framework for Industrial Text
  Engineering
Familia: A Configurable Topic Modeling Framework for Industrial Text Engineering
Di Jiang
Yuanfeng Song
Rongzhong Lian
Siqi Bao
Jinhua Peng
H. He
Hua Wu
9
17
0
11 Aug 2018
Unbiased Implicit Variational Inference
Unbiased Implicit Variational Inference
Michalis K. Titsias
Francisco J. R. Ruiz
BDL
24
52
0
06 Aug 2018
Iterative Amortized Inference
Iterative Amortized Inference
Joseph Marino
Yisong Yue
Stephan Mandt
BDL
DRL
26
165
0
24 Jul 2018
Global consensus Monte Carlo
Global consensus Monte Carlo
Lewis J. Rendell
A. M. Johansen
Anthony Lee
N. Whiteley
24
39
0
24 Jul 2018
Efficient Probabilistic Inference in the Quest for Physics Beyond the
  Standard Model
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank Wood
29
31
0
20 Jul 2018
Approximate Collapsed Gibbs Clustering with Expectation Propagation
Approximate Collapsed Gibbs Clustering with Expectation Propagation
Christopher Aicher
E. Fox
28
0
0
19 Jul 2018
Adaptive Variational Particle Filtering in Non-stationary Environments
Adaptive Variational Particle Filtering in Non-stationary Environments
Mahdi Azarafrooz
OffRL
6
0
0
19 Jul 2018
Avoiding Latent Variable Collapse With Generative Skip Models
Avoiding Latent Variable Collapse With Generative Skip Models
Adji Bousso Dieng
Yoon Kim
Alexander M. Rush
David M. Blei
DRL
27
172
0
12 Jul 2018
Fast yet Simple Natural-Gradient Descent for Variational Inference in
  Complex Models
Fast yet Simple Natural-Gradient Descent for Variational Inference in Complex Models
Mohammad Emtiyaz Khan
Didrik Nielsen
BDL
39
62
0
12 Jul 2018
Latent Alignment and Variational Attention
Latent Alignment and Variational Attention
Yuntian Deng
Yoon Kim
Justin T. Chiu
Demi Guo
Alexander M. Rush
BDL
18
110
0
10 Jul 2018
Fully Scalable Gaussian Processes using Subspace Inducing Inputs
Fully Scalable Gaussian Processes using Subspace Inducing Inputs
A. Panos
P. Dellaportas
Michalis K. Titsias
24
11
0
06 Jul 2018
Learning a Representation Map for Robot Navigation using Deep
  Variational Autoencoder
Learning a Representation Map for Robot Navigation using Deep Variational Autoencoder
Kai-Chun Hu
Peter O'Connor
SSL
DRL
21
2
0
05 Jul 2018
Understanding and Accelerating Particle-Based Variational Inference
Understanding and Accelerating Particle-Based Variational Inference
Chang-rui Liu
Jingwei Zhuo
Pengyu Cheng
Ruiyi Zhang
Jun Zhu
Lawrence Carin
11
14
0
04 Jul 2018
Quasi-Monte Carlo Variational Inference
Quasi-Monte Carlo Variational Inference
Alexander K. Buchholz
F. Wenzel
Stephan Mandt
BDL
30
58
0
04 Jul 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
33
681
0
03 Jul 2018
Topic Discovery in Massive Text Corpora Based on Min-Hashing
Topic Discovery in Massive Text Corpora Based on Min-Hashing
Gibran Fuentes-Pineda
Ivan Vladimir Meza Ruiz
6
12
0
03 Jul 2018
A Piecewise Deterministic Markov Process via $(r,θ)$ swaps in
  hyperspherical coordinates
A Piecewise Deterministic Markov Process via (r,θ)(r,θ)(r,θ) swaps in hyperspherical coordinates
Alexander Terenin
D. Thorngren
11
3
0
02 Jul 2018
Deep learning in business analytics and operations research: Models,
  applications and managerial implications
Deep learning in business analytics and operations research: Models, applications and managerial implications
Mathias Kraus
Stefan Feuerriegel
A. Oztekin
15
286
0
28 Jun 2018
Conditional Generators of Words Definitions
Conditional Generators of Words Definitions
Artyom Gadetsky
Ilya Yakubovskiy
Dmitry Vetrov
6
68
0
26 Jun 2018
The decoupled extended Kalman filter for dynamic exponential-family
  factorization models
The decoupled extended Kalman filter for dynamic exponential-family factorization models
C. Gomez-Uribe
Brian Karrer
27
6
0
26 Jun 2018
Unsupervised Word Segmentation from Speech with Attention
Unsupervised Word Segmentation from Speech with Attention
Pierre Godard
Marcely Zanon Boito
Lucas Ondel
Alexandre Berard
François Yvon
Aline Villavicencio
Laurent Besacier
21
27
0
18 Jun 2018
Using Social Network Information in Bayesian Truth Discovery
Using Social Network Information in Bayesian Truth Discovery
Jielong Yang
Junshan Wang
Wee Peng Tay
14
9
0
08 Jun 2018
Probabilistic Model-Agnostic Meta-Learning
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
176
666
0
07 Jun 2018
Scalable Bayesian Nonparametric Clustering and Classification
Scalable Bayesian Nonparametric Clustering and Classification
Yang Ni
Peter Muller
M. Diesendruck
Sinead Williamson
Yitan Zhu
Yuan Ji
31
26
0
07 Jun 2018
Finding Convincing Arguments Using Scalable Bayesian Preference Learning
Finding Convincing Arguments Using Scalable Bayesian Preference Learning
Edwin Simpson
Iryna Gurevych
BDL
11
52
0
06 Jun 2018
Gaussian Mixture Reduction for Time-Constrained Approximate Inference in
  Hybrid Bayesian Networks
Gaussian Mixture Reduction for Time-Constrained Approximate Inference in Hybrid Bayesian Networks
C. Park
Kathryn B. Laskey
Paulo C. G. Costa
Shou Matsumoto
BDL
14
2
0
06 Jun 2018
Pathwise Derivatives for Multivariate Distributions
Pathwise Derivatives for Multivariate Distributions
M. Jankowiak
Theofanis Karaletsos
27
11
0
05 Jun 2018
Pathwise Derivatives Beyond the Reparameterization Trick
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
30
110
0
05 Jun 2018
Forward Amortized Inference for Likelihood-Free Variational
  Marginalization
Forward Amortized Inference for Likelihood-Free Variational Marginalization
L. Ambrogioni
Umut Güçlü
Julia Berezutskaya
Eva W. P. van den Borne
Yağmur Güçlütürk
Max Hinne
E. Maris
Marcel van Gerven
BDL
VLM
22
17
0
29 May 2018
Efficient Bayesian Inference for a Gaussian Process Density Model
Efficient Bayesian Inference for a Gaussian Process Density Model
Christian Donner
Manfred Opper
29
14
0
29 May 2018
Wasserstein Variational Inference
Wasserstein Variational Inference
L. Ambrogioni
Umut Güçlü
Yağmur Güçlütürk
Max Hinne
E. Maris
Marcel van Gerven
BDL
DRL
19
42
0
29 May 2018
Previous
123...141516...202122
Next