ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.1901
  4. Cited By
MCMC using Hamiltonian dynamics

MCMC using Hamiltonian dynamics

9 June 2012
Radford M. Neal
ArXivPDFHTML

Papers citing "MCMC using Hamiltonian dynamics"

50 / 1,032 papers shown
Title
Particle-based Online Bayesian Sampling
Particle-based Online Bayesian Sampling
Yifan Yang
Chang-rui Liu
Zhengze Zhang
BDL
11
7
0
28 Feb 2023
Efficient Informed Proposals for Discrete Distributions via Newton's
  Series Approximation
Efficient Informed Proposals for Discrete Distributions via Newton's Series Approximation
Yue Xiang
Dongyao Zhu
Bowen Lei
Dongkuan Xu
Ruqi Zhang
18
5
0
27 Feb 2023
A Targeted Accuracy Diagnostic for Variational Approximations
A Targeted Accuracy Diagnostic for Variational Approximations
Yu-Xiang Wang
Mikolaj Kasprzak
Jonathan H. Huggins
DRL
17
1
0
24 Feb 2023
Efficiently handling constraints with Metropolis-adjusted Langevin algorithm
Jinyuan Chang
C. Tang
Yuanzheng Zhu
16
1
0
23 Feb 2023
Faster high-accuracy log-concave sampling via algorithmic warm starts
Faster high-accuracy log-concave sampling via algorithmic warm starts
Jason M. Altschuler
Sinho Chewi
16
34
0
20 Feb 2023
Preconditioned Score-based Generative Models
Preconditioned Score-based Generative Models
He Ma
Xiatian Zhu
Xiatian Zhu
Jianfeng Feng
DiffM
30
4
0
13 Feb 2023
Thermodynamic AI and the fluctuation frontier
Thermodynamic AI and the fluctuation frontier
Patrick J. Coles
Collin Szczepanski
Denis Melanson
Kaelan Donatella
Antonio J. Martinez
Faris M. Sbahi
AI4CE
32
16
0
09 Feb 2023
On Sampling with Approximate Transport Maps
On Sampling with Approximate Transport Maps
Louis Grenioux
Alain Durmus
Eric Moulines
Marylou Gabrié
OT
22
15
0
09 Feb 2023
A Benchmark on Uncertainty Quantification for Deep Learning Prognostics
A Benchmark on Uncertainty Quantification for Deep Learning Prognostics
Luis Basora
Arthur Viens
M. A. Chao
X. Olive
UQCV
BDL
OOD
19
8
0
09 Feb 2023
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Ba-Hien Tran
B. Shahbaba
Stephan Mandt
Maurizio Filippone
SyDa
BDL
UQCV
10
5
0
09 Feb 2023
Fixed-kinetic Neural Hamiltonian Flows for enhanced interpretability and
  reduced complexity
Fixed-kinetic Neural Hamiltonian Flows for enhanced interpretability and reduced complexity
Vincent Souveton
Arnaud Guillin
J. Jasche
G. Lavaux
Manon Michel
16
3
0
03 Feb 2023
Versatile Energy-Based Probabilistic Models for High Energy Physics
Versatile Energy-Based Probabilistic Models for High Energy Physics
Taoli Cheng
Aaron Courville
DiffM
9
0
0
01 Feb 2023
Kernel Stein Discrepancy thinning: a theoretical perspective of
  pathologies and a practical fix with regularization
Kernel Stein Discrepancy thinning: a theoretical perspective of pathologies and a practical fix with regularization
Clément Bénard
B. Staber
Sébastien Da Veiga
32
4
0
31 Jan 2023
Fast Bayesian inference for spatial mean-parameterized
  Conway-Maxwell-Poisson models
Fast Bayesian inference for spatial mean-parameterized Conway-Maxwell-Poisson models
Bokgyeong Kang
John Hughes
M. Haran
19
1
0
27 Jan 2023
Geodesic slice sampling on the sphere
Geodesic slice sampling on the sphere
Michael Habeck
Mareike Hasenpflug
Shantanu Kodgirwar
Daniel Rudolf
8
10
0
19 Jan 2023
Physics-informed Information Field Theory for Modeling Physical Systems
  with Uncertainty Quantification
Physics-informed Information Field Theory for Modeling Physical Systems with Uncertainty Quantification
A. Alberts
Ilias Bilionis
26
12
0
18 Jan 2023
Dynamic SIR/SEIR-like models comprising a time-dependent transmission
  rate: Hamiltonian Monte Carlo approach with applications to COVID-19
Dynamic SIR/SEIR-like models comprising a time-dependent transmission rate: Hamiltonian Monte Carlo approach with applications to COVID-19
Hristo Inouzhe
María Xosé Rodríguez-Álvarez
Lorenzo Nagar
E. Akhmatskaya
8
4
0
16 Jan 2023
L-HYDRA: Multi-Head Physics-Informed Neural Networks
L-HYDRA: Multi-Head Physics-Informed Neural Networks
Zongren Zou
George Karniadakis
AI4CE
16
26
0
05 Jan 2023
Design of Hamiltonian Monte Carlo for perfect simulation of general
  continuous distributions
Design of Hamiltonian Monte Carlo for perfect simulation of general continuous distributions
G. Leigh
Amanda R. Northrop
19
1
0
23 Dec 2022
Parameter Inference based on Gaussian Processes Informed by Nonlinear
  Partial Differential Equations
Parameter Inference based on Gaussian Processes Informed by Nonlinear Partial Differential Equations
Zhao-Xia Li
Shih-Feng Yang
Jeff Wu
11
2
0
22 Dec 2022
Calibrating AI Models for Wireless Communications via Conformal
  Prediction
Calibrating AI Models for Wireless Communications via Conformal Prediction
K. Cohen
Sangwoo Park
Osvaldo Simeone
S. Shamai
24
6
0
15 Dec 2022
Lower bounds on the rate of convergence for accept-reject-based Markov
  chains in Wasserstein and total variation distances
Lower bounds on the rate of convergence for accept-reject-based Markov chains in Wasserstein and total variation distances
Austin R. Brown
Galin L. Jones
16
3
0
12 Dec 2022
Designing Ecosystems of Intelligence from First Principles
Designing Ecosystems of Intelligence from First Principles
Karl J. Friston
M. Ramstead
Alex B. Kiefer
Alexander Tschantz
Christopher L. Buckley
...
K. Fung
Jason G. Fox
Steven Swanson
D. Mapes
Gabriel René
8
31
0
02 Dec 2022
Bayesian Physics Informed Neural Networks for Data Assimilation and
  Spatio-Temporal Modelling of Wildfires
Bayesian Physics Informed Neural Networks for Data Assimilation and Spatio-Temporal Modelling of Wildfires
J. Dabrowski
D. Pagendam
J. Hilton
Conrad Sanderson
Dan MacKinlay
C. Huston
Andrew Bolt
Petra Kuhnert
PINN
25
17
0
02 Dec 2022
Latent Space Diffusion Models of Cryo-EM Structures
Latent Space Diffusion Models of Cryo-EM Structures
Karsten Kreis
Tim Dockhorn
Zihao Li
Ellen D. Zhong
DiffM
27
15
0
25 Nov 2022
Toward Unlimited Self-Learning MCMC with Parallel Adaptive Annealing
Toward Unlimited Self-Learning MCMC with Parallel Adaptive Annealing
Yuma Ichikawa
Akira Nakagawa
Hiromoto Masayuki
Yuhei Umeda
BDL
18
0
0
25 Nov 2022
Neural Superstatistics for Bayesian Estimation of Dynamic Cognitive
  Models
Neural Superstatistics for Bayesian Estimation of Dynamic Cognitive Models
Lukas Schumacher
Paul-Christian Burkner
A. Voss
Ullrich Kothe
Stefan T. Radev
13
11
0
23 Nov 2022
Unadjusted Hamiltonian MCMC with Stratified Monte Carlo Time Integration
Unadjusted Hamiltonian MCMC with Stratified Monte Carlo Time Integration
Nawaf Bou-Rabee
Milo Marsden
24
12
0
20 Nov 2022
Bayesian autoencoders for data-driven discovery of coordinates,
  governing equations and fundamental constants
Bayesian autoencoders for data-driven discovery of coordinates, governing equations and fundamental constants
Liyao (Mars) Gao
J. Nathan Kutz
AI4CE
22
20
0
19 Nov 2022
Normalizing Flows for Hierarchical Bayesian Analysis: A Gravitational
  Wave Population Study
Normalizing Flows for Hierarchical Bayesian Analysis: A Gravitational Wave Population Study
David Ruhe
Kaze W. K. Wong
M. Cranmer
Patrick Forré
11
6
0
15 Nov 2022
Bayesian score calibration for approximate models
Bayesian score calibration for approximate models
Joshua J. Bon
D. Warne
David J. Nott
Christopher C. Drovandi
24
3
0
10 Nov 2022
Bayesian Neural Networks for Macroeconomic Analysis
Bayesian Neural Networks for Macroeconomic Analysis
Niko Hauzenberger
Florian Huber
K. Klieber
Massimiliano Marcellino
BDL
29
1
0
09 Nov 2022
Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
V. Lalchand
W. Bruinsma
David R. Burt
C. Rasmussen
GP
17
6
0
04 Nov 2022
Nonparametric Involutive Markov Chain Monte Carlo
Nonparametric Involutive Markov Chain Monte Carlo
Carol Mak
Fabian Zaiser
C. Ong
15
1
0
02 Nov 2022
Preferential Subsampling for Stochastic Gradient Langevin Dynamics
Preferential Subsampling for Stochastic Gradient Langevin Dynamics
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
17
0
0
28 Oct 2022
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
Matthew D. Hoffman
T. Le
Pavel Sountsov
Christopher Suter
Ben Lee
Vikash K. Mansinghka
Rif A. Saurous
BDL
24
12
0
27 Oct 2022
SPQR: An R Package for Semi-Parametric Density and Quantile Regression
SPQR: An R Package for Semi-Parametric Density and Quantile Regression
Steven G. Xu
Reetam Majumder
Brian J. Reich
11
0
0
26 Oct 2022
Sampling with Mollified Interaction Energy Descent
Sampling with Mollified Interaction Energy Descent
Lingxiao Li
Qiang Liu
Anna Korba
Mikhail Yurochkin
Justin Solomon
25
15
0
24 Oct 2022
On Many-Actions Policy Gradient
On Many-Actions Policy Gradient
Michal Nauman
Marek Cygan
9
0
0
24 Oct 2022
Online Probabilistic Model Identification using Adaptive Recursive MCMC
Online Probabilistic Model Identification using Adaptive Recursive MCMC
Pedram Agand
Mo Chen
H. Taghirad
27
4
0
23 Oct 2022
Adaptive Tuning for Metropolis Adjusted Langevin Trajectories
Adaptive Tuning for Metropolis Adjusted Langevin Trajectories
L. Riou-Durand
Pavel Sountsov
Jure Vogrinc
C. Margossian
Samuel Power
25
6
0
21 Oct 2022
Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian
  Monte Carlo
Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo
Maxence Noble
Valentin De Bortoli
Alain Durmus
16
6
0
21 Oct 2022
Transport Elliptical Slice Sampling
Transport Elliptical Slice Sampling
A. Cabezas
Christopher Nemeth
11
8
0
19 Oct 2022
Estimating the Contamination Factor's Distribution in Unsupervised
  Anomaly Detection
Estimating the Contamination Factor's Distribution in Unsupervised Anomaly Detection
Lorenzo Perini
Paul-Christian Buerkner
Arto Klami
18
14
0
19 Oct 2022
Sampling using Adaptive Regenerative Processes
Sampling using Adaptive Regenerative Processes
Hector McKimm
Andi Q. Wang
M. Pollock
Christian P. Robert
Gareth O. Roberts
16
1
0
18 Oct 2022
ZooD: Exploiting Model Zoo for Out-of-Distribution Generalization
ZooD: Exploiting Model Zoo for Out-of-Distribution Generalization
Qishi Dong
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Tianyang Hu
Yongxin Yang
Sung-Ho Bae
Zhenguo Li
OODD
VLM
18
14
0
17 Oct 2022
Data Subsampling for Bayesian Neural Networks
Data Subsampling for Bayesian Neural Networks
Eiji Kawasaki
M. Holzmann
BDL
17
1
0
17 Oct 2022
Principled Pruning of Bayesian Neural Networks through Variational Free
  Energy Minimization
Principled Pruning of Bayesian Neural Networks through Variational Free Energy Minimization
Jim Beckers
Bart Van Erp
Ziyue Zhao
K. Kondrashov
Bert De Vries
AAML
21
5
0
17 Oct 2022
Meta-Uncertainty in Bayesian Model Comparison
Meta-Uncertainty in Bayesian Model Comparison
Marvin Schmitt
Stefan T. Radev
Paul-Christian Burkner
UD
22
10
0
13 Oct 2022
Maximum entropy exploration in contextual bandits with neural networks
  and energy based models
Maximum entropy exploration in contextual bandits with neural networks and energy based models
A. Elwood
Marco Leonardi
A. Mohamed
A. Rozza
8
1
0
12 Oct 2022
Previous
123...567...192021
Next