Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.1901
Cited By
MCMC using Hamiltonian dynamics
9 June 2012
Radford M. Neal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MCMC using Hamiltonian dynamics"
50 / 1,031 papers shown
Title
Vision-Language Navigation with Energy-Based Policy
Rui Liu
Wenguan Wang
Y. Yang
32
3
0
18 Oct 2024
Training Neural Samplers with Reverse Diffusive KL Divergence
Jiajun He
Wenlin Chen
Mingtian Zhang
David Barber
José Miguel Hernández-Lobato
DiffM
26
4
0
16 Oct 2024
Exact MCMC for Intractable Proposals
Dwija Kakkad
Dootika Vats
22
0
0
14 Oct 2024
Probabilistic Degeneracy Detection for Point-to-Plane Error Minimization
Johan Hatleskog
Kostas Alexis
3DPC
32
0
0
14 Oct 2024
Variational Diffusion Posterior Sampling with Midpoint Guidance
Badr Moufad
Yazid Janati
Lisa Bedin
Alain Durmus
Randal Douc
Eric Moulines
Jimmy Olsson
DiffM
25
1
0
13 Oct 2024
On Divergence Measures for Training GFlowNets
Tiago da Silva
Eliezer de Souza da Silva
Diego Mesquita
BDL
29
1
0
12 Oct 2024
Physics and Deep Learning in Computational Wave Imaging
Youzuo Lin
Shihang Feng
J. Theiler
Yinpeng Chen
Umberto Villa
Jing Rao
John Greenhall
Cristian Pantea
M. Anastasio
B. Wohlberg
29
0
0
10 Oct 2024
Identifying latent disease factors differently expressed in patient subgroups using group factor analysis
Fabio S. Ferreira
John Ashburner
Arabella Bouzigues
Chatrin Suksasilp
Lucy L. Russell
...
Fermin Moreno
Barbara Borroni
Samuel Kaski
Jonathan D. Rohrer
J. Mourão-Miranda
CML
46
0
0
10 Oct 2024
Mixing of the No-U-Turn Sampler and the Geometry of Gaussian Concentration
Nawaf Bou-Rabee
Stefan Oberdörster
23
1
0
09 Oct 2024
Is Gibbs sampling faster than Hamiltonian Monte Carlo on GLMs?
Son Luu
Zuheng Xu
Nikola Surjanovic
Miguel Biron-Lattes
Trevor Campbell
Alexandre Bouchard-Coté
18
0
0
04 Oct 2024
Thermodynamic Bayesian Inference
Maxwell Aifer
Samuel Duffield
Kaelan Donatella
Denis Melanson
Phoebe Klett
Zach Belateche
Gavin Crooks
Antonio J. Martinez
Patrick J. Coles
31
3
0
02 Oct 2024
Bayes-CATSI: A variational Bayesian deep learning framework for medical time series data imputation
Omkar Kulkarni
Rohitash Chandra
CML
AI4TS
BDL
32
0
0
01 Oct 2024
Learning Multimodal Latent Generative Models with Energy-Based Prior
Shiyu Yuan
Jiali Cui
Hanao Li
Tian Han
24
0
0
30 Sep 2024
Functional Stochastic Gradient MCMC for Bayesian Neural Networks
Mengjing Wu
Junyu Xuan
Jie Lu
BDL
13
0
0
25 Sep 2024
EQ-CBM: A Probabilistic Concept Bottleneck with Energy-based Models and Quantized Vectors
Sangwon Kim
Dasom Ahn
B. Ko
In-su Jang
Kwang-Ju Kim
20
4
0
22 Sep 2024
Implicit Dynamical Flow Fusion (IDFF) for Generative Modeling
Mohammad R. Rezaei
Rahul G. Krishnan
Milos R. Popovic
M. Lankarany
DiffM
24
0
0
22 Sep 2024
Learning with Sparsely Permuted Data: A Robust Bayesian Approach
Abhisek Chakraborty
Saptati Datta
25
0
0
16 Sep 2024
HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models
Tingwei Meng
Zongren Zou
Jérome Darbon
George Karniadakis
DiffM
35
2
0
15 Sep 2024
Empowering Bayesian Neural Networks with Functional Priors through Anchored Ensembling for Mechanics Surrogate Modeling Applications
Javad Ghorbanian
Nicholas Casaprima
Audrey Olivier
28
0
0
08 Sep 2024
Latent Space Energy-based Neural ODEs
Sheng Cheng
Deqian Kong
Jianwen Xie
Kookjin Lee
Ying Nian Wu
Yezhou Yang
DiffM
99
1
0
05 Sep 2024
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Burkner
50
3
0
23 Aug 2024
Adaptive Stereographic MCMC
Cameron Bell
Krzystof Łatuszyński
Gareth O. Roberts
22
0
0
21 Aug 2024
Enhanced BPINN Training Convergence in Solving General and Multi-scale Elliptic PDEs with Noise
Yilong Hou
Xi’an Li
Jinran Wu
You-Gan Wang
61
1
0
18 Aug 2024
Learning to Explore for Stochastic Gradient MCMC
Seunghyun Kim
Seohyeon Jung
Seonghyeon Kim
Juho Lee
BDL
33
1
0
17 Aug 2024
Incremental Structure Discovery of Classification via Sequential Monte Carlo
Changze Huang
Di Wang
14
0
0
15 Aug 2024
Quantification of total uncertainty in the physics-informed reconstruction of CVSim-6 physiology
Mario De Florio
Zongren Zou
Daniele E. Schiavazzi
George Karniadakis
26
3
0
13 Aug 2024
Persistent Sampling: Enhancing the Efficiency of Sequential Monte Carlo
M. Karamanis
U. Seljak
24
0
0
30 Jul 2024
Piecewise deterministic generative models
Andrea Bertazzi
Alain Durmus
Dario Shariatian
Umut Simsekli
Éric Moulines
DiffM
27
0
0
28 Jul 2024
Enhanced SMC
2
^2
2
: Leveraging Gradient Information from Differentiable Particle Filters Within Langevin Proposals
Conor Rosato
Joshua Murphy
Alessandro Varsi
P. Horridge
Simon Maskell
29
4
0
24 Jul 2024
Achieving Well-Informed Decision-Making in Drug Discovery: A Comprehensive Calibration Study using Neural Network-Based Structure-Activity Models
Hannah Rosa Friesacher
O. Engkvist
Lewis H. Mervin
Yves Moreau
Adam Arany
26
0
0
19 Jul 2024
Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review
Masatoshi Uehara
Yulai Zhao
Tommaso Biancalani
Sergey Levine
54
22
0
18 Jul 2024
Computationally Efficient Estimation of Large Probit Models
Patrick Ding
Guido Imbens
Zhaonan Qu
Yinyu Ye
29
0
0
12 Jul 2024
Randomized Physics-Informed Neural Networks for Bayesian Data Assimilation
Yifei Zong
D. Barajas-Solano
A. Tartakovsky
41
1
0
05 Jul 2024
Exact Bayesian Gaussian Cox Processes Using Random Integral
Bingjing Tang
Julia Palacios
23
0
0
28 Jun 2024
Torchtree: flexible phylogenetic model development and inference using PyTorch
Mathieu Fourment
Matthew Macaulay
Christiaan J. Swanepoel
Xiang Ji
M. Suchard
Frederick A Matsen IV
BDL
29
0
0
26 Jun 2024
Recursive variational Gaussian approximation with the Whittle likelihood for linear non-Gaussian state space models
Bao Anh Vu
David Gunawan
Andrew Zammit-Mangion
19
1
0
23 Jun 2024
Bayesian neural networks for predicting uncertainty in full-field material response
G. Pasparakis
Lori Graham-Brady
Michael D. Shields
AI4CE
37
4
0
21 Jun 2024
Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA
Hao Chen
Liam Castelli
Martin Ferianc
Hongyu Zhou
Shuanglong Liu
Wayne Luk
Hongxiang Fan
28
0
0
20 Jun 2024
Gradient Estimation via Differentiable Metropolis-Hastings
Gaurav Arya
Moritz Schauer
Ruben Seyer
OT
BDL
35
0
0
20 Jun 2024
Robust Inference of Dynamic Covariance Using Wishart Processes and Sequential Monte Carlo
Hester Huijsdens
D. Leeftink
Linda Geerligs
Max Hinne
19
0
0
07 Jun 2024
A comprehensive and FAIR comparison between MLP and KAN representations for differential equations and operator networks
K. Shukla
Juan Diego Toscano
Zhicheng Wang
Zongren Zou
George Karniadakis
24
73
0
05 Jun 2024
Sampling From Multiscale Densities With Delayed Rejection Generalized Hamiltonian Monte Carlo
Gilad Turok
Chirag Modi
Bob Carpenter
BDL
30
3
0
04 Jun 2024
One-Shot Federated Learning with Bayesian Pseudocoresets
Tim d'Hondt
Mykola Pechenizkiy
Robert Peharz
FedML
26
0
0
04 Jun 2024
Evaluating Bayesian deep learning for radio galaxy classification
Devina Mohan
Anna M. M. Scaife
UQCV
BDL
39
1
0
28 May 2024
EM Distillation for One-step Diffusion Models
Sirui Xie
Zhisheng Xiao
Diederik P. Kingma
Tingbo Hou
Ying Nian Wu
Kevin Patrick Murphy
Tim Salimans
Ben Poole
Ruiqi Gao
VLM
DiffM
37
24
0
27 May 2024
Faster Sampling via Stochastic Gradient Proximal Sampler
Xunpeng Huang
Difan Zou
Yian Ma
Hanze Dong
Tong Zhang
52
3
0
27 May 2024
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows
A. Cabezas
Louis Sharrock
Christopher Nemeth
34
1
0
23 May 2024
A Direct Importance Sampling-based Framework for Rare Event Uncertainty Quantification in Non-Gaussian Spaces
Elsayed M. Eshra
Konstantinos G. Papakonstantinou
Hamed Nikbakht
23
0
0
23 May 2024
Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification
Kaizheng Wang
Fabio Cuzzolin
Keivan K1 Shariatmadar
David Moens
Hans Hallez
UQCV
BDL
65
6
0
23 May 2024
Generalized Laplace Approximation
Yinsong Chen
Samson S. Yu
Zhong Li
Chee Peng Lim
BDL
51
0
0
22 May 2024
Previous
1
2
3
4
5
...
19
20
21
Next