ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.1901
  4. Cited By
MCMC using Hamiltonian dynamics

MCMC using Hamiltonian dynamics

9 June 2012
Radford M. Neal
ArXivPDFHTML

Papers citing "MCMC using Hamiltonian dynamics"

50 / 1,032 papers shown
Title
On Divergence Measures for Bayesian Pseudocoresets
On Divergence Measures for Bayesian Pseudocoresets
Balhae Kim
J. Choi
Seanie Lee
Yoonho Lee
Jung-Woo Ha
Juho Lee
DD
8
11
0
12 Oct 2022
Gradient-Guided Importance Sampling for Learning Binary Energy-Based
  Models
Gradient-Guided Importance Sampling for Learning Binary Energy-Based Models
Meng Liu
Haoran Liu
Shuiwang Ji
22
5
0
11 Oct 2022
Deep Active Ensemble Sampling For Image Classification
Deep Active Ensemble Sampling For Image Classification
S. Mohamadi
Gianfranco Doretto
Donald Adjeroh
UQCV
13
9
0
11 Oct 2022
Robust and Controllable Object-Centric Learning through Energy-based
  Models
Robust and Controllable Object-Centric Learning through Energy-based Models
Ruixiang Zhang
Tong Che
B. Ivanovic
Renhao Wang
Marco Pavone
Yoshua Bengio
Liam Paull
OCL
26
8
0
11 Oct 2022
CoopHash: Cooperative Learning of Multipurpose Descriptor and
  Contrastive Pair Generator via Variational MCMC Teaching for Supervised Image
  Hashing
CoopHash: Cooperative Learning of Multipurpose Descriptor and Contrastive Pair Generator via Variational MCMC Teaching for Supervised Image Hashing
Khoa D. Doan
Jianwen Xie
Y. Zhu
Yang Zhao
Ping Li
GAN
10
2
0
09 Oct 2022
Automatic Data Augmentation via Invariance-Constrained Learning
Automatic Data Augmentation via Invariance-Constrained Learning
Ignacio Hounie
Luiz F. O. Chamon
Alejandro Ribeiro
18
10
0
29 Sep 2022
Denoising MCMC for Accelerating Diffusion-Based Generative Models
Denoising MCMC for Accelerating Diffusion-Based Generative Models
Beomsu Kim
Jong Chul Ye
DiffM
44
13
0
29 Sep 2022
Marginally Constrained Nonparametric Bayesian Inference through Gaussian
  Processes
Marginally Constrained Nonparametric Bayesian Inference through Gaussian Processes
Bingjing Tang
Vinayak A. Rao
6
0
0
28 Sep 2022
Hamiltonian Adaptive Importance Sampling
Hamiltonian Adaptive Importance Sampling
Ali Mousavi
R. Monsefi
Victor Elvira
28
13
0
27 Sep 2022
Hamiltonian Monte Carlo for efficient Gaussian sampling: long and random
  steps
Hamiltonian Monte Carlo for efficient Gaussian sampling: long and random steps
Simon Apers
S. Gribling
Dániel Szilágyi
26
10
0
26 Sep 2022
Face Super-Resolution Using Stochastic Differential Equations
Face Super-Resolution Using Stochastic Differential Equations
Marcelo dos Santos
Rayson Laroca
Rafael O. Ribeiro
João Neves
Hugo Proencca
David Menotti
DiffM
24
11
0
24 Sep 2022
hdtg: An R package for high-dimensional truncated normal simulation
hdtg: An R package for high-dimensional truncated normal simulation
Zhenyu Zhang
A. Chin
A. Nishimura
M. Suchard
11
2
0
23 Sep 2022
Amortized Variational Inference: A Systematic Review
Amortized Variational Inference: A Systematic Review
Ankush Ganguly
Sanjana Jain
Ukrit Watchareeruetai
15
14
0
22 Sep 2022
Seq2Seq Surrogates of Epidemic Models to Facilitate Bayesian Inference
Seq2Seq Surrogates of Epidemic Models to Facilitate Bayesian Inference
G. Charles
Timothy M Wolock
P. Winskill
A. Ghani
Samir Bhatt
Seth Flaxman
13
4
0
20 Sep 2022
Physics-Informed Machine Learning of Dynamical Systems for Efficient
  Bayesian Inference
Physics-Informed Machine Learning of Dynamical Systems for Efficient Bayesian Inference
Somayajulu L. N. Dhulipala
Yifeng Che
Michael D. Shields
28
0
0
19 Sep 2022
Optimal Scaling for Locally Balanced Proposals in Discrete Spaces
Optimal Scaling for Locally Balanced Proposals in Discrete Spaces
Haoran Sun
H. Dai
Dale Schuurmans
18
13
0
16 Sep 2022
Efficiency Ordering of Stochastic Gradient Descent
Efficiency Ordering of Stochastic Gradient Descent
Jie Hu
Vishwaraj Doshi
Do Young Eun
26
6
0
15 Sep 2022
A Geometric Perspective on Variational Autoencoders
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
24
21
0
15 Sep 2022
Langevin Autoencoders for Learning Deep Latent Variable Models
Langevin Autoencoders for Learning Deep Latent Variable Models
Shohei Taniguchi
Yusuke Iwasawa
Wataru Kumagai
Yutaka Matsuo
BDL
SyDa
36
2
0
15 Sep 2022
BayesLDM: A Domain-Specific Language for Probabilistic Modeling of
  Longitudinal Data
BayesLDM: A Domain-Specific Language for Probabilistic Modeling of Longitudinal Data
Ka-Yee Tung
Steven De La Torre
Mohamed El Mistiri
Rebecca Braga De Braganca
Eric B. Hekler
Misha Pavel
D. Rivera
Pedja Klasnja
D. Spruijt-Metz
Benjamin M. Marlin
17
1
0
12 Sep 2022
Parallel MCMC Algorithms: Theoretical Foundations, Algorithm Design,
  Case Studies
Parallel MCMC Algorithms: Theoretical Foundations, Algorithm Design, Case Studies
N. Glatt-Holtz
Andrew J Holbrook
J. Krometis
Cecilia F. Mondaini
16
10
0
10 Sep 2022
SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp
  and motion optimization through diffusion
SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through diffusion
Julen Urain
Niklas Funk
Jan Peters
Georgia Chalvatzaki
DiffM
52
118
0
08 Sep 2022
Bayesian Neural Network Inference via Implicit Models and the Posterior
  Predictive Distribution
Bayesian Neural Network Inference via Implicit Models and the Posterior Predictive Distribution
J. Dabrowski
D. Pagendam
UQCV
BDL
11
0
0
06 Sep 2022
elhmc: An R Package for Hamiltonian Monte Carlo Sampling in Bayesian
  Empirical Likelihood
elhmc: An R Package for Hamiltonian Monte Carlo Sampling in Bayesian Empirical Likelihood
Dang Trung Kien
Neo Han Wei
S. Chaudhuri
17
2
0
02 Sep 2022
Bayesian order identification of ARMA models with projection predictive
  inference
Bayesian order identification of ARMA models with projection predictive inference
Yann McLatchie
Asael Alonzo Matamoros
David Kohns
Aki Vehtari
10
1
0
31 Aug 2022
Smoothness Analysis for Probabilistic Programs with Application to
  Optimised Variational Inference
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference
Wonyeol Lee
Xavier Rival
Hongseok Yang
14
9
0
22 Aug 2022
Score-Based Diffusion meets Annealed Importance Sampling
Score-Based Diffusion meets Annealed Importance Sampling
Arnaud Doucet
Will Grathwohl
A. G. Matthews
Heiko Strathmann
DiffM
28
43
0
16 Aug 2022
Nesterov smoothing for sampling without smoothness
Nesterov smoothing for sampling without smoothness
JiaoJiao Fan
Bo Yuan
Jiaming Liang
Yongxin Chen
32
2
0
15 Aug 2022
Intuitive Joint Priors for Bayesian Linear Multilevel Models: The R2D2M2
  prior
Intuitive Joint Priors for Bayesian Linear Multilevel Models: The R2D2M2 prior
Javier Enrique Aguilar
Paul-Christian Burkner
9
24
0
15 Aug 2022
Bayesian Inference with Latent Hamiltonian Neural Networks
Bayesian Inference with Latent Hamiltonian Neural Networks
Somayajulu L. N. Dhulipala
Yifeng Che
Michael D. Shields
BDL
29
3
0
12 Aug 2022
Sampling algorithms in statistical physics: a guide for statistics and
  machine learning
Sampling algorithms in statistical physics: a guide for statistics and machine learning
Michael F Faulkner
Samuel Livingstone
11
6
0
09 Aug 2022
Computing Bayes: From Then 'Til Now'
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
20
15
0
01 Aug 2022
Sliced Wasserstein Variational Inference
Sliced Wasserstein Variational Inference
Mingxuan Yi
Song Liu
17
19
0
26 Jul 2022
A Bayesian hierarchical framework for emulating a complex crop yield
  simulator
A Bayesian hierarchical framework for emulating a complex crop yield simulator
M. M. Hasan
J. Cumming
17
0
0
26 Jul 2022
Efficient shape-constrained inference for the autocovariance sequence
  from a reversible Markov chain
Efficient shape-constrained inference for the autocovariance sequence from a reversible Markov chain
Stephen Berg
Hyebin Song
25
6
0
26 Jul 2022
Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware
  Priors
Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware Priors
Gianluca Detommaso
Alberto Gasparin
A. Wilson
Cédric Archambeau
UQCV
BDL
29
3
0
17 Jul 2022
Split Hamiltonian Monte Carlo revisited
Split Hamiltonian Monte Carlo revisited
F. Casas
J. Sanz-Serna
Luke Shaw
11
8
0
15 Jul 2022
BR-SNIS: Bias Reduced Self-Normalized Importance Sampling
BR-SNIS: Bias Reduced Self-Normalized Importance Sampling
Gabriel Victorino Cardoso
S. Samsonov
Achille Thin
Eric Moulines
Jimmy Olsson
24
6
0
13 Jul 2022
On the Robustness of Bayesian Neural Networks to Adversarial Attacks
On the Robustness of Bayesian Neural Networks to Adversarial Attacks
Luca Bortolussi
Ginevra Carbone
Luca Laurenti
A. Patané
G. Sanguinetti
Matthew Wicker
AAML
16
11
0
13 Jul 2022
Expert Elicitation and Data Noise Learning for Material Flow Analysis
  using Bayesian Inference
Expert Elicitation and Data Noise Learning for Material Flow Analysis using Bayesian Inference
Jiayuan Dong
Jiankan Liao
Xun Huan
Daniel R. Cooper
9
6
0
13 Jul 2022
Accelerating Score-based Generative Models with Preconditioned Diffusion
  Sampling
Accelerating Score-based Generative Models with Preconditioned Diffusion Sampling
He Ma
Li Zhang
Xiatian Zhu
Jianfeng Feng
DiffM
84
25
0
05 Jul 2022
Accelerating Hamiltonian Monte Carlo via Chebyshev Integration Time
Accelerating Hamiltonian Monte Carlo via Chebyshev Integration Time
Jun-Kun Wang
Andre Wibisono
22
9
0
05 Jul 2022
Cyclical Kernel Adaptive Metropolis
Cyclical Kernel Adaptive Metropolis
J. Li
Yimeng Zeng
Wen-Ping Guo
6
0
0
29 Jun 2022
Reconstructing the Universe with Variational self-Boosted Sampling
Reconstructing the Universe with Variational self-Boosted Sampling
Chirag Modi
Yin Li
David M. Blei
11
8
0
28 Jun 2022
Robustness to corruption in pre-trained Bayesian neural networks
Robustness to corruption in pre-trained Bayesian neural networks
Xi Wang
Laurence Aitchison
OOD
UQCV
9
4
0
24 Jun 2022
Automatic Zig-Zag sampling in practice
Automatic Zig-Zag sampling in practice
Alice Corbella
S. Spencer
Gareth O. Roberts
8
20
0
22 Jun 2022
A Langevin-like Sampler for Discrete Distributions
A Langevin-like Sampler for Discrete Distributions
Ruqi Zhang
Xingchao Liu
Qiang Liu
BDL
16
37
0
20 Jun 2022
Low-Precision Stochastic Gradient Langevin Dynamics
Low-Precision Stochastic Gradient Langevin Dynamics
Ruqi Zhang
A. Wilson
Chris De Sa
BDL
8
14
0
20 Jun 2022
Approximate Bayesian Inference for the Interaction Types 1, 2, 3 and 4
  with Application in Disease Mapping
Approximate Bayesian Inference for the Interaction Types 1, 2, 3 and 4 with Application in Disease Mapping
Esmail Abdul Fattah
Haavard Rue
8
6
0
18 Jun 2022
Iterative importance sampling with Markov chain Monte Carlo sampling in
  robust Bayesian analysis
Iterative importance sampling with Markov chain Monte Carlo sampling in robust Bayesian analysis
Ivette Raices Cruz
J. Lindström
Matthias C. M. Troffaes
U. Sahlin
19
12
0
17 Jun 2022
Previous
123...678...192021
Next