Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.1901
Cited By
MCMC using Hamiltonian dynamics
9 June 2012
Radford M. Neal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MCMC using Hamiltonian dynamics"
50 / 1,031 papers shown
Title
On the convergence of dynamic implementations of Hamiltonian Monte Carlo and No U-Turn Samplers
Alain Durmus
Samuel Gruffaz
Miika Kailas
E. Saksman
M. Vihola
17
5
0
07 Jul 2023
Spatiotemporal Besov Priors for Bayesian Inverse Problems
Shiwei Lan
M. Pasha
Shuyi Li
Weining Shen
14
5
0
28 Jun 2023
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Daniel Huang
Christian Camaño
Jonathan Tsegaye
Jonathan Austin Gale
AI4CE
28
0
0
10 Jun 2023
Entropy-based Training Methods for Scalable Neural Implicit Sampler
Weijian Luo
Boya Zhang
Zhihua Zhang
21
10
0
08 Jun 2023
Solution of physics-based inverse problems using conditional generative adversarial networks with full gradient penalty
Deep Ray
Javier Murgoitio-Esandi
Agnimitra Dasgupta
Assad A. Oberai
GAN
26
13
0
08 Jun 2023
Structured Voronoi Sampling
Afra Amini
Li Du
Ryan Cotterell
DiffM
22
1
0
05 Jun 2023
Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization
Navid Ansari
Hans-Peter Seidel
Vahid Babaei
11
2
0
01 Jun 2023
A Probabilistic Relaxation of the Two-Stage Object Pose Estimation Paradigm
Onur Beker
3DV
6
0
0
01 Jun 2023
R-VGAL: A Sequential Variational Bayes Algorithm for Generalised Linear Mixed Models
Bao Anh Vu
David Gunawan
A. Zammit‐Mangion
DRL
10
1
0
01 Jun 2023
Efficient Training of Energy-Based Models Using Jarzynski Equality
D. Carbone
Mengjian Hua
Simon Coste
Eric Vanden-Eijnden
8
4
0
30 May 2023
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDL
OffRL
18
20
0
29 May 2023
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
Aniket Das
Dheeraj M. Nagaraj
25
7
0
27 May 2023
Improving Neural Additive Models with Bayesian Principles
Kouroche Bouchiat
Alexander Immer
Hugo Yèche
Gunnar Rätsch
Vincent Fortuin
BDL
MedIm
26
6
0
26 May 2023
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms
Tim Tsz-Kit Lau
Han Liu
T. Pock
34
4
0
25 May 2023
Learning Rate Free Sampling in Constrained Domains
Louis Sharrock
Lester W. Mackey
Christopher Nemeth
28
2
0
24 May 2023
Deep Learning-enabled MCMC for Probabilistic State Estimation in District Heating Grids
Andreas Bott
Tim Janke
Florian Steinke
13
8
0
24 May 2023
Optimal Preconditioning and Fisher Adaptive Langevin Sampling
Michalis K. Titsias
19
11
0
23 May 2023
Subsampling Error in Stochastic Gradient Langevin Diffusions
Kexin Jin
Chenguang Liu
J. Latz
20
0
0
23 May 2023
Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis
Agathe Senellart
Clément Chadebec
S. Allassonnière
DRL
30
1
0
19 May 2023
Model-based Validation as Probabilistic Inference
Harrison Delecki
Anthony Corso
Mykel J. Kochenderfer
16
7
0
17 May 2023
To smooth a cloud or to pin it down: Guarantees and Insights on Score Matching in Denoising Diffusion Models
Francisco Vargas
Teodora Reu
A. Kerekes
Michael M Bronstein
DiffM
35
1
0
16 May 2023
Robustness of Bayesian ordinal response model against outliers via divergence approach
Tomotaka Momozaki
Tomoyuki Nakagawa
15
1
0
12 May 2023
Using a Bayesian-Inference Approach to Calibrating Models for Simulation in Robotics
H. Unjhawala
Ruochun Zhang
Weihua Hu
Jinlong Wu
R. Serban
Dan Negrut
15
3
0
11 May 2023
Object based Bayesian full-waveform inversion for shear elastography
A. Carpio
E. Cebrián
Andrea Gutierrez
15
1
0
11 May 2023
CosmoPower-JAX: high-dimensional Bayesian inference with differentiable cosmological emulators
Davide Piras
A. Spurio Mancini
11
12
0
10 May 2023
A local resampling trick for focused molecular dynamics
Josh Fass
Forrest York
M. Wittmann
Joseph W. Kaus
Yutong Zhao
17
0
0
09 May 2023
Bayesian Synthetic Likelihood
David T. Frazier
Christopher C. Drovandi
David J. Nott
25
217
0
09 May 2023
Inferring Covariance Structure from Multiple Data Sources via Subspace Factor Analysis
N. K. Chandra
David B. Dunson
Jason Xu
CML
11
7
0
06 May 2023
A Generative Modeling Framework for Inferring Families of Biomechanical Constitutive Laws in Data-Sparse Regimes
Minglang Yin
Zongren Zou
Enrui Zhang
C. Cavinato
J. Humphrey
George Karniadakis
SyDa
MedIm
AI4CE
45
11
0
04 May 2023
Mixtures of Gaussian process experts based on kernel stick-breaking processes
Yuji Saikai
Khue-Dung Dang
12
0
0
26 Apr 2023
Score-Based Diffusion Models as Principled Priors for Inverse Imaging
Berthy T. Feng
Jamie Smith
Michael Rubinstein
Huiwen Chang
Katherine L. Bouman
William T. Freeman
DiffM
74
87
0
23 Apr 2023
Likelihood-Based Generative Radiance Field with Latent Space Energy-Based Model for 3D-Aware Disentangled Image Representation
Y. Zhu
Jianwen Xie
Ping Li
MedIm
18
4
0
16 Apr 2023
Bayesian Inference for Jump-Diffusion Approximations of Biochemical Reaction Networks
Derya Altıntan
Bastian Alt
Heinz Koeppl
8
0
0
13 Apr 2023
When does Metropolized Hamiltonian Monte Carlo provably outperform Metropolis-adjusted Langevin algorithm?
Yuansi Chen
Khashayar Gatmiry
78
15
0
10 Apr 2023
A Comprehensive Survey on Knowledge Distillation of Diffusion Models
Weijian Luo
DiffM
MedIm
38
33
0
09 Apr 2023
A Simple Proof of the Mixing of Metropolis-Adjusted Langevin Algorithm under Smoothness and Isoperimetry
Yuansi Chen
Khashayar Gatmiry
11
6
0
08 Apr 2023
Efficient Multimodal Sampling via Tempered Distribution Flow
Yixuan Qiu
Xiao Wang
OT
34
2
0
08 Apr 2023
Conservative objective models are a special kind of contrastive divergence-based energy model
Christopher Beckham
C. Pal
14
4
0
07 Apr 2023
EGC: Image Generation and Classification via a Diffusion Energy-Based Model
Qiushan Guo
Chuofan Ma
Yi-Xin Jiang
Zehuan Yuan
Yizhou Yu
Ping Luo
DiffM
12
6
0
04 Apr 2023
Diffusion Bridge Mixture Transports, Schrödinger Bridge Problems and Generative Modeling
Stefano Peluchetti
OT
DiffM
11
47
0
03 Apr 2023
Bayesian neural networks via MCMC: a Python-based tutorial
Rohitash Chandra
Royce Chen
Joshua Simmons
BDL
24
10
0
02 Apr 2023
Fluctuation without dissipation: Microcanonical Langevin Monte Carlo
Jakob Robnik
U. Seljak
41
6
0
31 Mar 2023
Hessian-informed Hamiltonian Monte Carlo for high-dimensional problems
M. Karimi
K. Dayal
M. Pozzi
16
2
0
28 Mar 2023
Soy: An Efficient MILP Solver for Piecewise-Affine Systems
Haoze Wu
Min Wu
Dorsa Sadigh
Clark W. Barrett
28
0
0
23 Mar 2023
Sampling from a Gaussian distribution conditioned on the level set of a piecewise affine, continuous function
Jesse Windle
23
0
0
21 Mar 2023
Bayesian Pseudo-Coresets via Contrastive Divergence
Piyush Tiwary
Kumar Shubham
V. Kashyap
Prathosh A.P.
21
3
0
20 Mar 2023
Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review
Sibo Cheng
César Quilodrán-Casas
Said Ouala
A. Farchi
Che Liu
...
Weiping Ding
Yike Guo
A. Carrassi
Marc Bocquet
Rossella Arcucci
AI4CE
24
124
0
18 Mar 2023
Methods and applications of PDMP samplers with boundary conditions
J. Bierkens
Sebastiano Grazzi
Gareth O. Roberts
Moritz Schauer
19
7
0
14 Mar 2023
Diverse 3D Hand Gesture Prediction from Body Dynamics by Bilateral Hand Disentanglement
Xingqun Qi
Chen Liu
Muyi Sun
Lincheng Li
Changjie Fan
Xin Yu
SLR
65
15
0
03 Mar 2023
Mean-Square Analysis of Discretized Itô Diffusions for Heavy-tailed Sampling
Ye He
Tyler Farghly
Krishnakumar Balasubramanian
Murat A. Erdogdu
34
4
0
01 Mar 2023
Previous
1
2
3
4
5
6
...
19
20
21
Next