ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.1901
  4. Cited By
MCMC using Hamiltonian dynamics

MCMC using Hamiltonian dynamics

9 June 2012
Radford M. Neal
ArXivPDFHTML

Papers citing "MCMC using Hamiltonian dynamics"

50 / 1,031 papers shown
Title
Bayesian inverse problems with $l_1$ priors: a Randomize-then-Optimize
  approach
Bayesian inverse problems with l1l_1l1​ priors: a Randomize-then-Optimize approach
Zheng Wang
Johnathan M. Bardsley
A. Solonen
Tiangang Cui
Youssef M. Marzouk
13
36
0
07 Jul 2016
Alternating Back-Propagation for Generator Network
Alternating Back-Propagation for Generator Network
Tian Han
Yang Lu
Song-Chun Zhu
Ying Nian Wu
6
4
0
28 Jun 2016
Approximate Marginal Posterior for Log Gaussian Cox Processes
Shinichiro Shirota
A. Gelfand
10
2
0
26 Jun 2016
Geometric MCMC for Infinite-Dimensional Inverse Problems
Geometric MCMC for Infinite-Dimensional Inverse Problems
A. Beskos
Mark Girolami
Shiwei Lan
P. Farrell
Andrew M. Stuart
13
137
0
20 Jun 2016
An Empirical Comparison of Sampling Quality Metrics: A Case Study for
  Bayesian Nonnegative Matrix Factorization
An Empirical Comparison of Sampling Quality Metrics: A Case Study for Bayesian Nonnegative Matrix Factorization
A. Masood
Weiwei Pan
Finale Doshi-Velez
31
4
0
20 Jun 2016
Bayesian Inference on Matrix Manifolds for Linear Dimensionality
  Reduction
Bayesian Inference on Matrix Manifolds for Linear Dimensionality Reduction
Andrew J Holbrook
A. Vandenberg-Rodes
B. Shahbaba
19
15
0
14 Jun 2016
Reducing the error of Monte Carlo Algorithms by Learning Control
  Variates
Reducing the error of Monte Carlo Algorithms by Learning Control Variates
Brendan D. Tracey
David Wolpert
BDL
14
9
0
07 Jun 2016
A Dirichlet Form approach to MCMC Optimal Scaling
A Dirichlet Form approach to MCMC Optimal Scaling
Giacomo Zanella
W. Kendall
M. Bédard
18
9
0
05 Jun 2016
Fast Bayesian whole-brain fMRI analysis with spatial 3D priors
Fast Bayesian whole-brain fMRI analysis with spatial 3D priors
Per Sidén
Anders Eklund
David Bolin
M. Villani
12
47
0
03 Jun 2016
Synthesizing Dynamic Patterns by Spatial-Temporal Generative ConvNet
Synthesizing Dynamic Patterns by Spatial-Temporal Generative ConvNet
Jianwen Xie
Song-Chun Zhu
Ying Nian Wu
GAN
21
10
0
03 Jun 2016
CaMKII activation supports reward-based neural network optimization
  through Hamiltonian sampling
CaMKII activation supports reward-based neural network optimization through Hamiltonian sampling
Zhaofei Yu
David Kappel
R. Legenstein
Sen Song
Feng Chen
Wolfgang Maass
16
1
0
01 Jun 2016
Quantifying the accuracy of approximate diffusions and Markov chains
Quantifying the accuracy of approximate diffusions and Markov chains
Jonathan H. Huggins
James Y. Zou
39
29
0
20 May 2016
On Asymptotic Inference in Stochastic Differential Equations with
  Time-Varying Covariates
On Asymptotic Inference in Stochastic Differential Equations with Time-Varying Covariates
Trisha Maitra
S. Bhattacharya
9
3
0
11 May 2016
Likelihood Inflating Sampling Algorithm
Likelihood Inflating Sampling Algorithm
R. Entezari
Radu V. Craiu
Jeffrey S. Rosenthal
37
22
0
06 May 2016
Bayesian inference in hierarchical models by combining independent
  posteriors
Bayesian inference in hierarchical models by combining independent posteriors
Ritabrata Dutta
P. Blomstedt
Samuel Kaski
TPM
6
2
0
30 Mar 2016
The block-Poisson estimator for optimally tuned exact subsampling MCMC
The block-Poisson estimator for optimally tuned exact subsampling MCMC
M. Quiroz
Minh-Ngoc Tran
M. Villani
Robert Kohn
Khue-Dung Dang
20
25
0
27 Mar 2016
Partition Functions from Rao-Blackwellized Tempered Sampling
Partition Functions from Rao-Blackwellized Tempered Sampling
David Carlson
Patrick Stinson
Ari Pakman
Liam Paninski
20
13
0
07 Mar 2016
Towards Unifying Hamiltonian Monte Carlo and Slice Sampling
Towards Unifying Hamiltonian Monte Carlo and Slice Sampling
Yizhe Zhang
Xiangyu Wang
Changyou Chen
Ricardo Henao
Kai Fan
Lawrence Carin
17
21
0
25 Feb 2016
Parsimonious modeling with Information Filtering Networks
Parsimonious modeling with Information Filtering Networks
W. Barfuss
Guido Previde Massara
T. Di Matteo
T. Aste
11
76
0
23 Feb 2016
Patterns of Scalable Bayesian Inference
Patterns of Scalable Bayesian Inference
E. Angelino
Matthew J. Johnson
Ryan P. Adams
14
87
0
16 Feb 2016
An introduction to sampling via measure transport
An introduction to sampling via measure transport
Youssef Marzouk
Tarek A. El-Moselhy
M. Parno
Alessio Spantini
OT
30
88
0
16 Feb 2016
A randomized maximum a posterior method for posterior sampling of high
  dimensional nonlinear Bayesian inverse problems
A randomized maximum a posterior method for posterior sampling of high dimensional nonlinear Bayesian inverse problems
Kainan Wang
T. Bui-Thanh
Omar Ghattas
11
46
0
11 Feb 2016
Variational Hamiltonian Monte Carlo via Score Matching
Variational Hamiltonian Monte Carlo via Score Matching
Cheng Zhang
B. Shahbaba
Hongkai Zhao
BDL
13
26
0
06 Feb 2016
Exchangeable Random Measures for Sparse and Modular Graphs with
  Overlapping Communities
Exchangeable Random Measures for Sparse and Modular Graphs with Overlapping Communities
A. Todeschini
Xenia Miscouridou
François Caron
16
40
0
05 Feb 2016
On the Geometric Ergodicity of Hamiltonian Monte Carlo
On the Geometric Ergodicity of Hamiltonian Monte Carlo
Samuel Livingstone
M. Betancourt
Simon Byrne
Mark Girolami
26
116
0
29 Jan 2016
Fitting Bayesian item response models in Stata and Stan
Fitting Bayesian item response models in Stata and Stan
Robert Grant
Daniel Furr
Bob Carpenter
Andrew Gelman
51
17
0
13 Jan 2016
Identifying the Optimal Integration Time in Hamiltonian Monte Carlo
Identifying the Optimal Integration Time in Hamiltonian Monte Carlo
M. Betancourt
6
37
0
02 Jan 2016
The Reduced-Order Hybrid Monte Carlo Sampling Smoother
The Reduced-Order Hybrid Monte Carlo Sampling Smoother
A. Attia
R. Stefanescu
Adrian Sandu
12
30
0
02 Jan 2016
High-Order Stochastic Gradient Thermostats for Bayesian Learning of Deep
  Models
High-Order Stochastic Gradient Thermostats for Bayesian Learning of Deep Models
Chunyuan Li
Changyou Chen
Kai Fan
Lawrence Carin
BDL
24
25
0
23 Dec 2015
A General Framework for Constrained Bayesian Optimization using
  Information-based Search
A General Framework for Constrained Bayesian Optimization using Information-based Search
José Miguel Hernández-Lobato
M. Gelbart
Ryan P. Adams
Matthew W. Hoffman
Zoubin Ghahramani
19
162
0
30 Nov 2015
Recycling intermediate steps to improve Hamiltonian Monte Carlo
Recycling intermediate steps to improve Hamiltonian Monte Carlo
A. Nishimura
David B. Dunson
20
9
0
21 Nov 2015
Model-based Dashboards for Customer Analytics
Model-based Dashboards for Customer Analytics
Ryan Dew
Asim Ansari
17
1
0
17 Nov 2015
Sequential estimation of intrinsic activity and synaptic input in single
  neurons by particle filtering with optimal importance density
Sequential estimation of intrinsic activity and synaptic input in single neurons by particle filtering with optimal importance density
Pau Closas
A. Guillamón
14
7
0
12 Nov 2015
Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale
  Bayesian Sampling
Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale Bayesian Sampling
Xiaocheng Shang
Zhanxing Zhu
B. Leimkuhler
Amos J. Storkey
22
51
0
29 Oct 2015
Scalable MCMC for Mixed Membership Stochastic Blockmodels
Scalable MCMC for Mixed Membership Stochastic Blockmodels
Wenzhe Li
Sungjin Ahn
Max Welling
BDL
32
42
0
16 Oct 2015
Distilling Model Knowledge
Distilling Model Knowledge
George Papamakarios
BDL
16
17
0
08 Oct 2015
Learning FRAME Models Using CNN Filters
Learning FRAME Models Using CNN Filters
Yang Lu
Song-Chun Zhu
Ying Nian Wu
GAN
17
66
0
28 Sep 2015
A Markov Jump Process for More Efficient Hamiltonian Monte Carlo
A Markov Jump Process for More Efficient Hamiltonian Monte Carlo
A. Berger
M. Mudigonda
M. DeWeese
Jascha Narain Sohl-Dickstein
27
1
0
13 Sep 2015
Gradient Scan Gibbs Sampler: an efficient algorithm for high-dimensional
  Gaussian distributions
Gradient Scan Gibbs Sampler: an efficient algorithm for high-dimensional Gaussian distributions
O. Féron
F. Orieux
J. Giovannelli
14
15
0
11 Sep 2015
Properties of the Affine Invariant Ensemble Sampler in high dimensions
Properties of the Affine Invariant Ensemble Sampler in high dimensions
D. Huijser
J. Goodman
B. Brewer
17
23
0
07 Sep 2015
Bayesian Dropout
Bayesian Dropout
Tue Herlau
Morten Mørup
Mikkel N. Schmidt
BDL
22
2
0
12 Aug 2015
Adaptive Multiple Importance Sampling for Gaussian Processes
Adaptive Multiple Importance Sampling for Gaussian Processes
Xiaoyu Xiong
Václav Smídl
Maurizio Filippone
27
6
0
05 Aug 2015
Orthogonal parallel MCMC methods for sampling and optimization
Orthogonal parallel MCMC methods for sampling and optimization
Luca Martino
Victor Elvira
D. Luengo
J. Corander
F. Louzada
29
74
0
30 Jul 2015
A multiscale strategy for Bayesian inference using transport maps
A multiscale strategy for Bayesian inference using transport maps
M. Parno
Tarek A. El-Moselhy
Youssef Marzouk
24
30
0
24 Jul 2015
Hessian corrections to the Metropolis Adjusted Langevin Algorithm
Hessian corrections to the Metropolis Adjusted Langevin Algorithm
T. House
19
2
0
22 Jul 2015
Emulation of Higher-Order Tensors in Manifold Monte Carlo Methods for
  Bayesian Inverse Problems
Emulation of Higher-Order Tensors in Manifold Monte Carlo Methods for Bayesian Inverse Problems
Shiwei Lan
T. Bui-Thanh
M. Christie
Mark Girolami
31
56
0
22 Jul 2015
Gaussian Process Regression with Location Errors
Gaussian Process Regression with Location Errors
D. Cervone
Natesh S. Pillai
23
17
0
27 Jun 2015
Gaussian process hyper-parameter estimation using parallel
  asymptotically independent Markov sampling
Gaussian process hyper-parameter estimation using parallel asymptotically independent Markov sampling
A. Garbuno-Iñigo
F. DiazDelaO
Konstantin Zuev
22
11
0
26 Jun 2015
Sampling constrained probability distributions using Spherical
  Augmentation
Sampling constrained probability distributions using Spherical Augmentation
Shiwei Lan
B. Shahbaba
TPM
22
14
0
19 Jun 2015
Hamiltonian Monte Carlo Acceleration Using Surrogate Functions with
  Random Bases
Hamiltonian Monte Carlo Acceleration Using Surrogate Functions with Random Bases
Cheng Zhang
B. Shahbaba
Hongkai Zhao
29
32
0
18 Jun 2015
Previous
123...18192021
Next