Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.1901
Cited By
MCMC using Hamiltonian dynamics
9 June 2012
Radford M. Neal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MCMC using Hamiltonian dynamics"
50 / 1,031 papers shown
Title
FAdam: Adam is a natural gradient optimizer using diagonal empirical Fisher information
Dongseong Hwang
ODL
29
4
0
21 May 2024
Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
Lorenzo Mauri
Giacomo Zanella
22
3
0
14 May 2024
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics
Haoyang Zheng
Hengrong Du
Qi Feng
Wei Deng
Guang Lin
31
4
0
13 May 2024
Multi-fidelity Hamiltonian Monte Carlo
Dhruv V. Patel
Jonghyun Lee
Matthew W. Farthing
P. Kitanidis
Eric F. Darve
40
0
0
08 May 2024
Gaussian Stochastic Weight Averaging for Bayesian Low-Rank Adaptation of Large Language Models
Emre Onal
Klemens Flöge
Emma Caldwell
A. Sheverdin
Vincent Fortuin
UQCV
BDL
37
9
0
06 May 2024
Liouville Flow Importance Sampler
Yifeng Tian
Nishant Panda
Yen Ting Lin
28
8
0
03 May 2024
S
2
^2
2
AC: Energy-Based Reinforcement Learning with Stein Soft Actor Critic
Safa Messaoud
Billel Mokeddem
Zhenghai Xue
L. Pang
Bo An
Haipeng Chen
Sanjay Chawla
28
3
0
02 May 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAML
BDL
35
1
0
27 Apr 2024
GIST: Gibbs self-tuning for locally adaptive Hamiltonian Monte Carlo
Nawaf Bou-Rabee
Bob Carpenter
Milo Marsden
41
6
0
23 Apr 2024
Using early rejection Markov chain Monte Carlo and Gaussian processes to accelerate ABC methods
Xuefei Cao
Shijia Wang
Yongdao Zhou
28
3
0
13 Apr 2024
Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning
Zongren Zou
Tingwei Meng
Paula Chen
Jérome Darbon
George Karniadakis
36
7
0
12 Apr 2024
Constrained 6-DoF Grasp Generation on Complex Shapes for Improved Dual-Arm Manipulation
Gaurav Singh
Sanket Kalwar
Md Faizal Karim
Bipasha Sen
Nagamanikandan Govindan
Srinath Sridhar
K. M. Krishna
21
7
0
06 Apr 2024
RADIUM: Predicting and Repairing End-to-End Robot Failures using Gradient-Accelerated Sampling
Charles Dawson
Anjali Parashar
Chuchu Fan
40
0
0
04 Apr 2024
Proximal Oracles for Optimization and Sampling
Jiaming Liang
Yongxin Chen
23
3
0
02 Apr 2024
Divide, Conquer, Combine Bayesian Decision Tree Sampling
Jodie A. Cochrane
Adrian G. Wills
Sarah J. Johnson
19
1
0
26 Mar 2024
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
UD
63
2
0
20 Mar 2024
Energy Correction Model in the Feature Space for Out-of-Distribution Detection
Marc Lafon
Clément Rambour
Nicolas Thome
OODD
23
0
0
15 Mar 2024
Enhancing Transfer Learning with Flexible Nonparametric Posterior Sampling
Hyungi Lee
G. Nam
Edwin Fong
Juho Lee
BDL
27
5
0
12 Mar 2024
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
Yidong Zhao
João Tourais
Iain Pierce
Christian Nitsche
T. Treibel
Sebastian Weingartner
Artur M. Schweidtmann
Qian Tao
BDL
UQCV
25
5
0
04 Mar 2024
Joint Parameter and Parameterization Inference with Uncertainty Quantification through Differentiable Programming
Yongquan Qu
Mohamed Aziz Bhouri
Pierre Gentine
AI4CE
22
4
0
04 Mar 2024
Can a Confident Prior Replace a Cold Posterior?
Martin Marek
Brooks Paige
Pavel Izmailov
UQCV
BDL
27
4
0
02 Mar 2024
Listening to the Noise: Blind Denoising with Gibbs Diffusion
David Heurtel-Depeiges
C. Margossian
Ruben Ohana
Bruno Régaldo-Saint Blancard
DiffM
33
1
0
29 Feb 2024
Stable Training of Normalizing Flows for High-dimensional Variational Inference
Daniel Andrade
BDL
TPM
35
1
0
26 Feb 2024
Dissecting Human and LLM Preferences
Junlong Li
Fan Zhou
Shichao Sun
Yikai Zhang
Hai Zhao
Pengfei Liu
ALM
16
5
0
17 Feb 2024
Parameterizations for Gradient-based Markov Chain Monte Carlo on the Stiefel Manifold: A Comparative Study
Masahiro Tanaka
14
1
0
12 Feb 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
32
41
0
09 Feb 2024
Non-reversible lifts of reversible diffusion processes and relaxation times
Andreas Eberle
Francis Lörler
27
8
0
07 Feb 2024
Diffusive Gibbs Sampling
Wenlin Chen
Mingtian Zhang
Brooks Paige
José Miguel Hernández-Lobato
David Barber
14
7
0
05 Feb 2024
Fisher information dissipation for time inhomogeneous stochastic differential equations
Qi Feng
Xinzhe Zuo
Wuchen Li
15
3
0
01 Feb 2024
A non-homogeneous Semi-Markov model for Interval Censoring
M.N.M. van Lieshout
R. Markwitz
21
0
0
31 Jan 2024
Ensemble-Based Annealed Importance Sampling
Haoxuan Chen
Lexing Ying
31
2
0
28 Jan 2024
Langevin Unlearning: A New Perspective of Noisy Gradient Descent for Machine Unlearning
Eli Chien
Haoyu Wang
Ziang Chen
Pan Li
MU
22
8
0
18 Jan 2024
Reliability Analysis of Complex Systems using Subset Simulations with Hamiltonian Neural Networks
Denny Thaler
Somayajulu L. N. Dhulipala
F. Bamer
Bernd Markert
Michael D. Shields
29
7
0
10 Jan 2024
Energy based diffusion generator for efficient sampling of Boltzmann distributions
Yan Wang
Ling Guo
Hao Wu
Tao Zhou
DiffM
34
3
0
04 Jan 2024
Channelling Multimodality Through a Unimodalizing Transport: Warp-U Sampler and Stochastic Bridge Sampling
Fei Ding
David E. Jones
Shiyuan He
Xiao-Li Meng
OT
15
0
0
01 Jan 2024
A Compact Representation for Bayesian Neural Networks By Removing Permutation Symmetry
Tim Z. Xiao
Weiyang Liu
Robert Bamler
23
5
0
31 Dec 2023
Super-Efficient Exact Hamiltonian Monte Carlo for the von Mises Distribution
Ari Pakman
17
1
0
27 Dec 2023
GAD-PVI: A General Accelerated Dynamic-Weight Particle-Based Variational Inference Framework
Fangyikang Wang
Huminhao Zhu
Chao Zhang
Han Zhao
Hui Qian
19
5
0
27 Dec 2023
A Bayesian approach to functional regression: theory and computation
J. Berrendero
A. Coín
Antonio Cuevas
19
0
0
21 Dec 2023
Risk-Sensitive Stochastic Optimal Control as Rao-Blackwellized Markovian Score Climbing
Hany Abdulsamad
Sahel Iqbal
Adrien Corenflos
Simo Särkkä
35
2
0
21 Dec 2023
Metropolis-adjusted interacting particle sampling
Bjorn Sprungk
Simon Weissmann
Jakob Zech
13
7
0
21 Dec 2023
Scaling Up Bayesian Neural Networks with Neural Networks
Zahra Moslemi
Yang Meng
Shiwei Lan
B. Shahbaba
BDL
14
1
0
19 Dec 2023
Fast sampling from constrained spaces using the Metropolis-adjusted Mirror Langevin algorithm
Vishwak Srinivasan
Andre Wibisono
Ashia C. Wilson
22
7
0
14 Dec 2023
World Models via Policy-Guided Trajectory Diffusion
Marc Rigter
Jun Yamada
Ingmar Posner
26
19
0
13 Dec 2023
Randomized Physics-Informed Machine Learning for Uncertainty Quantification in High-Dimensional Inverse Problems
Yifei Zong
D. Barajas-Solano
A. Tartakovsky
25
2
0
11 Dec 2023
Transition Path Sampling with Boltzmann Generator-based MCMC Moves
Michael Plainer
Hannes Stärk
Charlotte Bunne
Stephan Günnemann
18
5
0
08 Dec 2023
Luck, skill, and depth of competition in games and social hierarchies
Max Jerdee
Mark E. J. Newman
14
6
0
07 Dec 2023
Improving Gradient-guided Nested Sampling for Posterior Inference
Pablo Lemos
Nikolay Malkin
Will Handley
Yoshua Bengio
Y. Hezaveh
Laurence Perreault Levasseur
BDL
31
9
0
06 Dec 2023
Bootstrap Your Own Variance
Polina Turishcheva
Jason Ramapuram
Sinead Williamson
Dan Busbridge
Eeshan Gunesh Dhekane
Russ Webb
UQCV
13
0
0
06 Dec 2023
Learning Energy-based Model via Dual-MCMC Teaching
Jiali Cui
Tian Han
19
10
0
05 Dec 2023
Previous
1
2
3
4
5
6
...
19
20
21
Next