ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.1901
  4. Cited By
MCMC using Hamiltonian dynamics

MCMC using Hamiltonian dynamics

9 June 2012
Radford M. Neal
ArXivPDFHTML

Papers citing "MCMC using Hamiltonian dynamics"

50 / 1,031 papers shown
Title
FAdam: Adam is a natural gradient optimizer using diagonal empirical
  Fisher information
FAdam: Adam is a natural gradient optimizer using diagonal empirical Fisher information
Dongseong Hwang
ODL
29
4
0
21 May 2024
Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
Lorenzo Mauri
Giacomo Zanella
22
3
0
14 May 2024
Constrained Exploration via Reflected Replica Exchange Stochastic
  Gradient Langevin Dynamics
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics
Haoyang Zheng
Hengrong Du
Qi Feng
Wei Deng
Guang Lin
31
4
0
13 May 2024
Multi-fidelity Hamiltonian Monte Carlo
Multi-fidelity Hamiltonian Monte Carlo
Dhruv V. Patel
Jonghyun Lee
Matthew W. Farthing
P. Kitanidis
Eric F. Darve
40
0
0
08 May 2024
Gaussian Stochastic Weight Averaging for Bayesian Low-Rank Adaptation of
  Large Language Models
Gaussian Stochastic Weight Averaging for Bayesian Low-Rank Adaptation of Large Language Models
Emre Onal
Klemens Flöge
Emma Caldwell
A. Sheverdin
Vincent Fortuin
UQCV
BDL
37
9
0
06 May 2024
Liouville Flow Importance Sampler
Liouville Flow Importance Sampler
Yifeng Tian
Nishant Panda
Yen Ting Lin
28
8
0
03 May 2024
S$^2$AC: Energy-Based Reinforcement Learning with Stein Soft Actor
  Critic
S2^22AC: Energy-Based Reinforcement Learning with Stein Soft Actor Critic
Safa Messaoud
Billel Mokeddem
Zhenghai Xue
L. Pang
Bo An
Haipeng Chen
Sanjay Chawla
28
3
0
02 May 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural
  Networks
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAML
BDL
35
1
0
27 Apr 2024
GIST: Gibbs self-tuning for locally adaptive Hamiltonian Monte Carlo
GIST: Gibbs self-tuning for locally adaptive Hamiltonian Monte Carlo
Nawaf Bou-Rabee
Bob Carpenter
Milo Marsden
41
6
0
23 Apr 2024
Using early rejection Markov chain Monte Carlo and Gaussian processes to
  accelerate ABC methods
Using early rejection Markov chain Monte Carlo and Gaussian processes to accelerate ABC methods
Xuefei Cao
Shijia Wang
Yongdao Zhou
28
3
0
13 Apr 2024
Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification
  in scientific machine learning
Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning
Zongren Zou
Tingwei Meng
Paula Chen
Jérome Darbon
George Karniadakis
36
7
0
12 Apr 2024
Constrained 6-DoF Grasp Generation on Complex Shapes for Improved
  Dual-Arm Manipulation
Constrained 6-DoF Grasp Generation on Complex Shapes for Improved Dual-Arm Manipulation
Gaurav Singh
Sanket Kalwar
Md Faizal Karim
Bipasha Sen
Nagamanikandan Govindan
Srinath Sridhar
K. M. Krishna
21
7
0
06 Apr 2024
RADIUM: Predicting and Repairing End-to-End Robot Failures using
  Gradient-Accelerated Sampling
RADIUM: Predicting and Repairing End-to-End Robot Failures using Gradient-Accelerated Sampling
Charles Dawson
Anjali Parashar
Chuchu Fan
40
0
0
04 Apr 2024
Proximal Oracles for Optimization and Sampling
Proximal Oracles for Optimization and Sampling
Jiaming Liang
Yongxin Chen
23
3
0
02 Apr 2024
Divide, Conquer, Combine Bayesian Decision Tree Sampling
Divide, Conquer, Combine Bayesian Decision Tree Sampling
Jodie A. Cochrane
Adrian G. Wills
Sarah J. Johnson
19
1
0
26 Mar 2024
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
UD
63
2
0
20 Mar 2024
Energy Correction Model in the Feature Space for Out-of-Distribution
  Detection
Energy Correction Model in the Feature Space for Out-of-Distribution Detection
Marc Lafon
Clément Rambour
Nicolas Thome
OODD
23
0
0
15 Mar 2024
Enhancing Transfer Learning with Flexible Nonparametric Posterior
  Sampling
Enhancing Transfer Learning with Flexible Nonparametric Posterior Sampling
Hyungi Lee
G. Nam
Edwin Fong
Juho Lee
BDL
27
5
0
12 Mar 2024
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications
  to Cardiac MRI Segmentation
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
Yidong Zhao
João Tourais
Iain Pierce
Christian Nitsche
T. Treibel
Sebastian Weingartner
Artur M. Schweidtmann
Qian Tao
BDL
UQCV
25
5
0
04 Mar 2024
Joint Parameter and Parameterization Inference with Uncertainty
  Quantification through Differentiable Programming
Joint Parameter and Parameterization Inference with Uncertainty Quantification through Differentiable Programming
Yongquan Qu
Mohamed Aziz Bhouri
Pierre Gentine
AI4CE
22
4
0
04 Mar 2024
Can a Confident Prior Replace a Cold Posterior?
Can a Confident Prior Replace a Cold Posterior?
Martin Marek
Brooks Paige
Pavel Izmailov
UQCV
BDL
27
4
0
02 Mar 2024
Listening to the Noise: Blind Denoising with Gibbs Diffusion
Listening to the Noise: Blind Denoising with Gibbs Diffusion
David Heurtel-Depeiges
C. Margossian
Ruben Ohana
Bruno Régaldo-Saint Blancard
DiffM
33
1
0
29 Feb 2024
Stable Training of Normalizing Flows for High-dimensional Variational
  Inference
Stable Training of Normalizing Flows for High-dimensional Variational Inference
Daniel Andrade
BDL
TPM
35
1
0
26 Feb 2024
Dissecting Human and LLM Preferences
Dissecting Human and LLM Preferences
Junlong Li
Fan Zhou
Shichao Sun
Yikai Zhang
Hai Zhao
Pengfei Liu
ALM
16
5
0
17 Feb 2024
Parameterizations for Gradient-based Markov Chain Monte Carlo on the
  Stiefel Manifold: A Comparative Study
Parameterizations for Gradient-based Markov Chain Monte Carlo on the Stiefel Manifold: A Comparative Study
Masahiro Tanaka
14
1
0
12 Feb 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
32
41
0
09 Feb 2024
Non-reversible lifts of reversible diffusion processes and relaxation
  times
Non-reversible lifts of reversible diffusion processes and relaxation times
Andreas Eberle
Francis Lörler
27
8
0
07 Feb 2024
Diffusive Gibbs Sampling
Diffusive Gibbs Sampling
Wenlin Chen
Mingtian Zhang
Brooks Paige
José Miguel Hernández-Lobato
David Barber
14
7
0
05 Feb 2024
Fisher information dissipation for time inhomogeneous stochastic
  differential equations
Fisher information dissipation for time inhomogeneous stochastic differential equations
Qi Feng
Xinzhe Zuo
Wuchen Li
15
3
0
01 Feb 2024
A non-homogeneous Semi-Markov model for Interval Censoring
A non-homogeneous Semi-Markov model for Interval Censoring
M.N.M. van Lieshout
R. Markwitz
21
0
0
31 Jan 2024
Ensemble-Based Annealed Importance Sampling
Ensemble-Based Annealed Importance Sampling
Haoxuan Chen
Lexing Ying
31
2
0
28 Jan 2024
Langevin Unlearning: A New Perspective of Noisy Gradient Descent for
  Machine Unlearning
Langevin Unlearning: A New Perspective of Noisy Gradient Descent for Machine Unlearning
Eli Chien
Haoyu Wang
Ziang Chen
Pan Li
MU
22
8
0
18 Jan 2024
Reliability Analysis of Complex Systems using Subset Simulations with
  Hamiltonian Neural Networks
Reliability Analysis of Complex Systems using Subset Simulations with Hamiltonian Neural Networks
Denny Thaler
Somayajulu L. N. Dhulipala
F. Bamer
Bernd Markert
Michael D. Shields
29
7
0
10 Jan 2024
Energy based diffusion generator for efficient sampling of Boltzmann
  distributions
Energy based diffusion generator for efficient sampling of Boltzmann distributions
Yan Wang
Ling Guo
Hao Wu
Tao Zhou
DiffM
34
3
0
04 Jan 2024
Channelling Multimodality Through a Unimodalizing Transport: Warp-U
  Sampler and Stochastic Bridge Sampling
Channelling Multimodality Through a Unimodalizing Transport: Warp-U Sampler and Stochastic Bridge Sampling
Fei Ding
David E. Jones
Shiyuan He
Xiao-Li Meng
OT
15
0
0
01 Jan 2024
A Compact Representation for Bayesian Neural Networks By Removing
  Permutation Symmetry
A Compact Representation for Bayesian Neural Networks By Removing Permutation Symmetry
Tim Z. Xiao
Weiyang Liu
Robert Bamler
23
5
0
31 Dec 2023
Super-Efficient Exact Hamiltonian Monte Carlo for the von Mises
  Distribution
Super-Efficient Exact Hamiltonian Monte Carlo for the von Mises Distribution
Ari Pakman
17
1
0
27 Dec 2023
GAD-PVI: A General Accelerated Dynamic-Weight Particle-Based Variational
  Inference Framework
GAD-PVI: A General Accelerated Dynamic-Weight Particle-Based Variational Inference Framework
Fangyikang Wang
Huminhao Zhu
Chao Zhang
Han Zhao
Hui Qian
19
5
0
27 Dec 2023
A Bayesian approach to functional regression: theory and computation
A Bayesian approach to functional regression: theory and computation
J. Berrendero
A. Coín
Antonio Cuevas
19
0
0
21 Dec 2023
Risk-Sensitive Stochastic Optimal Control as Rao-Blackwellized Markovian
  Score Climbing
Risk-Sensitive Stochastic Optimal Control as Rao-Blackwellized Markovian Score Climbing
Hany Abdulsamad
Sahel Iqbal
Adrien Corenflos
Simo Särkkä
35
2
0
21 Dec 2023
Metropolis-adjusted interacting particle sampling
Metropolis-adjusted interacting particle sampling
Bjorn Sprungk
Simon Weissmann
Jakob Zech
13
7
0
21 Dec 2023
Scaling Up Bayesian Neural Networks with Neural Networks
Scaling Up Bayesian Neural Networks with Neural Networks
Zahra Moslemi
Yang Meng
Shiwei Lan
B. Shahbaba
BDL
14
1
0
19 Dec 2023
Fast sampling from constrained spaces using the Metropolis-adjusted
  Mirror Langevin algorithm
Fast sampling from constrained spaces using the Metropolis-adjusted Mirror Langevin algorithm
Vishwak Srinivasan
Andre Wibisono
Ashia C. Wilson
22
7
0
14 Dec 2023
World Models via Policy-Guided Trajectory Diffusion
World Models via Policy-Guided Trajectory Diffusion
Marc Rigter
Jun Yamada
Ingmar Posner
26
19
0
13 Dec 2023
Randomized Physics-Informed Machine Learning for Uncertainty
  Quantification in High-Dimensional Inverse Problems
Randomized Physics-Informed Machine Learning for Uncertainty Quantification in High-Dimensional Inverse Problems
Yifei Zong
D. Barajas-Solano
A. Tartakovsky
25
2
0
11 Dec 2023
Transition Path Sampling with Boltzmann Generator-based MCMC Moves
Transition Path Sampling with Boltzmann Generator-based MCMC Moves
Michael Plainer
Hannes Stärk
Charlotte Bunne
Stephan Günnemann
18
5
0
08 Dec 2023
Luck, skill, and depth of competition in games and social hierarchies
Luck, skill, and depth of competition in games and social hierarchies
Max Jerdee
Mark E. J. Newman
14
6
0
07 Dec 2023
Improving Gradient-guided Nested Sampling for Posterior Inference
Improving Gradient-guided Nested Sampling for Posterior Inference
Pablo Lemos
Nikolay Malkin
Will Handley
Yoshua Bengio
Y. Hezaveh
Laurence Perreault Levasseur
BDL
31
9
0
06 Dec 2023
Bootstrap Your Own Variance
Bootstrap Your Own Variance
Polina Turishcheva
Jason Ramapuram
Sinead Williamson
Dan Busbridge
Eeshan Gunesh Dhekane
Russ Webb
UQCV
13
0
0
06 Dec 2023
Learning Energy-based Model via Dual-MCMC Teaching
Learning Energy-based Model via Dual-MCMC Teaching
Jiali Cui
Tian Han
19
10
0
05 Dec 2023
Previous
123456...192021
Next