24
10

Meta-Uncertainty in Bayesian Model Comparison

Abstract

Bayesian model comparison (BMC) offers a principled probabilistic approach to study and rank competing models. In standard BMC, we construct a discrete probability distribution over the set of possible models, conditional on the observed data of interest. These posterior model probabilities (PMPs) are measures of uncertainty, but -- when derived from a finite number of observations -- are also uncertain themselves. In this paper, we conceptualize distinct levels of uncertainty which arise in BMC. We explore a fully probabilistic framework for quantifying meta-uncertainty, resulting in an applied method to enhance any BMC workflow. Drawing on both Bayesian and frequentist techniques, we represent the uncertainty over the uncertain PMPs via meta-models which combine simulated and observed data into a predictive distribution for PMPs on new data. We demonstrate the utility of the proposed method in the context of conjugate Bayesian regression, likelihood-based inference with Markov chain Monte Carlo, and simulation-based inference with neural networks.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.