ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03123
  4. Cited By
Directional Message Passing for Molecular Graphs

Directional Message Passing for Molecular Graphs

6 March 2020
Johannes Klicpera
Janek Groß
Stephan Günnemann
ArXivPDFHTML

Papers citing "Directional Message Passing for Molecular Graphs"

50 / 450 papers shown
Title
DuEqNet: Dual-Equivariance Network in Outdoor 3D Object Detection for
  Autonomous Driving
DuEqNet: Dual-Equivariance Network in Outdoor 3D Object Detection for Autonomous Driving
Xihao Wang
Jiaming Lei
Hai Lan
Arafat Al-Jawari
Xian Wei
3DPC
14
6
0
27 Feb 2023
EquiPocket: an E(3)-Equivariant Geometric Graph Neural Network for
  Ligand Binding Site Prediction
EquiPocket: an E(3)-Equivariant Geometric Graph Neural Network for Ligand Binding Site Prediction
Yang Zhang
Zhewei Wei
Yefei Yuan
Zhaohan Ding
Wenbing Huang
29
16
0
23 Feb 2023
Data efficiency and extrapolation trends in neural network interatomic
  potentials
Data efficiency and extrapolation trends in neural network interatomic potentials
Joshua A Vita
Daniel Schwalbe-Koda
34
16
0
12 Feb 2023
Is Distance Matrix Enough for Geometric Deep Learning?
Is Distance Matrix Enough for Geometric Deep Learning?
Zian Li
Xiyuan Wang
Yinan Huang
Muhan Zhang
37
17
0
11 Feb 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
31
79
0
07 Feb 2023
Linear-scaling kernels for protein sequences and small molecules
  outperform deep learning while providing uncertainty quantitation and
  improved interpretability
Linear-scaling kernels for protein sequences and small molecules outperform deep learning while providing uncertainty quantitation and improved interpretability
J. Parkinson
Wen Wang
BDL
19
8
0
07 Feb 2023
GPS++: Reviving the Art of Message Passing for Molecular Property
  Prediction
GPS++: Reviving the Art of Message Passing for Molecular Property Prediction
Dominic Masters
Josef Dean
Kerstin Klaser
Zhiyi Li
Sam Maddrell-Mander
...
D. Beker
Andrew Fitzgibbon
Shenyang Huang
Ladislav Rampášek
Dominique Beaini
30
8
0
06 Feb 2023
Molecular Geometry-aware Transformer for accurate 3D Atomic System
  modeling
Molecular Geometry-aware Transformer for accurate 3D Atomic System modeling
Zheng Yuan
Yaoyun Zhang
Chuanqi Tan
Wei Wang
Feiran Huang
Songfang Huang
AI4CE
ViT
24
6
0
02 Feb 2023
End-to-End Full-Atom Antibody Design
End-to-End Full-Atom Antibody Design
Xiangzhe Kong
Wenbing Huang
Yang Liu
17
48
0
01 Feb 2023
On the Expressive Power of Geometric Graph Neural Networks
On the Expressive Power of Geometric Graph Neural Networks
Chaitanya K. Joshi
Cristian Bodnar
Simon V. Mathis
Taco Cohen
Pietro Liò
52
83
0
23 Jan 2023
Spatial Attention Kinetic Networks with E(n)-Equivariance
Spatial Attention Kinetic Networks with E(n)-Equivariance
Yuanqing Wang
J. Chodera
35
15
0
21 Jan 2023
INO: Invariant Neural Operators for Learning Complex Physical Systems
  with Momentum Conservation
INO: Invariant Neural Operators for Learning Complex Physical Systems with Momentum Conservation
Ning Liu
Yue Yu
Huaiqian You
Neeraj Tatikola
AI4CE
15
23
0
29 Dec 2022
Scalable Bayesian Uncertainty Quantification for Neural Network
  Potentials: Promise and Pitfalls
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
J. Zavadlav
35
21
0
15 Dec 2022
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
23
59
0
11 Dec 2022
Integration of Pre-trained Protein Language Models into Geometric Deep
  Learning Networks
Integration of Pre-trained Protein Language Models into Geometric Deep Learning Networks
Fang Wu
Yujun Tao
Dragomir R. Radev
Jinbo Xu
Stan Z. Li
AI4CE
30
32
0
07 Dec 2022
Protein Language Models and Structure Prediction: Connection and
  Progression
Protein Language Models and Structure Prediction: Connection and Progression
Bozhen Hu
Jun-Xiong Xia
Jiangbin Zheng
Cheng Tan
Yufei Huang
Yongjie Xu
Stan Z. Li
19
40
0
30 Nov 2022
Coordinating Cross-modal Distillation for Molecular Property Prediction
Coordinating Cross-modal Distillation for Molecular Property Prediction
Hao Zhang
N. Zhang
Ruixin Zhang
Lei Shen
Yingyi Zhang
Meng Liu
20
1
0
30 Nov 2022
Capturing long-range interaction with reciprocal space neural network
Capturing long-range interaction with reciprocal space neural network
Hongyu Yu
Liangliang Hong
Shiyou Chen
X. Gong
Hongjun Xiang
27
11
0
30 Nov 2022
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using
  Generalizable Machine Learning Potentials
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using Generalizable Machine Learning Potentials
Janice Lan
Aini Palizhati
Muhammed Shuaibi
Brandon M. Wood
Brook Wander
Abhishek Das
M. Uyttendaele
C. L. Zitnick
Zachary W. Ulissi
29
44
0
29 Nov 2022
Synthetic data enable experiments in atomistic machine learning
Synthetic data enable experiments in atomistic machine learning
John L A Gardner
Z. Beaulieu
Volker L. Deringer
31
6
0
29 Nov 2022
Invariance-Aware Randomized Smoothing Certificates
Invariance-Aware Randomized Smoothing Certificates
Jan Schuchardt
Stephan Günnemann
AAML
28
5
0
25 Nov 2022
BatmanNet: Bi-branch Masked Graph Transformer Autoencoder for Molecular
  Representation
BatmanNet: Bi-branch Masked Graph Transformer Autoencoder for Molecular Representation
Zhen Wang
Zheng Feng
Yanjun Li
Bowen Li
Yongrui Wang
C. Sha
Min He
Xiaolin Li
AI4CE
27
9
0
25 Nov 2022
Extreme Acceleration of Graph Neural Network-based Prediction Models for
  Quantum Chemistry
Extreme Acceleration of Graph Neural Network-based Prediction Models for Quantum Chemistry
Hatem Helal
J. Firoz
Jenna A. Bilbrey
M. M. Krell
Tom Murray
Ang Li
S. Xantheas
Sutanay Choudhury
GNN
33
5
0
25 Nov 2022
Learning Regularized Positional Encoding for Molecular Prediction
Learning Regularized Positional Encoding for Molecular Prediction
Xiang Gao
Weihao Gao
Wen Xiao
Zhirui Wang
Chong Wang
Liang Xiang
AI4CE
19
1
0
23 Nov 2022
A generalized machine learning framework for brittle crack problems
  using transfer learning and graph neural networks
A generalized machine learning framework for brittle crack problems using transfer learning and graph neural networks
Roberto Perera
V. Agrawal
AI4CE
11
9
0
22 Nov 2022
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated
  Catalyst Design
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design
Alexandre Duval
Victor Schmidt
Santiago Miret
Yoshua Bengio
Alex Hernández-García
David Rolnick
33
7
0
22 Nov 2022
From Node Interaction to Hop Interaction: New Effective and Scalable
  Graph Learning Paradigm
From Node Interaction to Hop Interaction: New Effective and Scalable Graph Learning Paradigm
Jie Chen
Zilong Li
Ying Zhu
Junping Zhang
Jian Pu
29
8
0
21 Nov 2022
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Albert J. W. Zhu
Simon L. Batzner
Albert Musaelian
Boris Kozinsky
22
45
0
17 Nov 2022
Equivariant Networks for Crystal Structures
Equivariant Networks for Crystal Structures
Sekouba Kaba
Siamak Ravanbakhsh
AI4CE
48
23
0
15 Nov 2022
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network
  Formalism
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism
Zimu Li
Zihan Pengmei
Han Zheng
Erik H. Thiede
Junyu Liu
Risi Kondor
27
2
0
14 Nov 2022
Deep Surrogate Docking: Accelerating Automated Drug Discovery with Graph
  Neural Networks
Deep Surrogate Docking: Accelerating Automated Drug Discovery with Graph Neural Networks
Ryien Hosseini
F. Simini
Austin R. Clyde
A. Ramanathan
21
5
0
04 Nov 2022
Geometry-Complete Perceptron Networks for 3D Molecular Graphs
Geometry-Complete Perceptron Networks for 3D Molecular Graphs
Alex Morehead
Jianlin Cheng
GNN
3DV
AI4CE
29
12
0
04 Nov 2022
A 3D-Shape Similarity-based Contrastive Approach to Molecular
  Representation Learning
A 3D-Shape Similarity-based Contrastive Approach to Molecular Representation Learning
Austin O. Atsango
N. Diamant
Ziqing Lu
Tommaso Biancalani
Gabriele Scalia
Kangway V Chuang
24
2
0
03 Nov 2022
The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in
  Materials Science
The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in Materials Science
Santiago Miret
Kin Long Kelvin Lee
Carmelo Gonzales
Marcel Nassar
Matthew Spellings
36
19
0
31 Oct 2022
Interpretable Geometric Deep Learning via Learnable Randomness Injection
Interpretable Geometric Deep Learning via Learnable Randomness Injection
Siqi Miao
Yunan Luo
Miaoyuan Liu
Pan Li
19
25
0
30 Oct 2022
Predicting Protein-Ligand Binding Affinity with Equivariant Line Graph
  Network
Predicting Protein-Ligand Binding Affinity with Equivariant Line Graph Network
Yi Yi
Xu Wan
Kangfei Zhao
Ou-Yang Le
Pei-Ying Zhao
21
1
0
27 Oct 2022
Structure-based Drug Design with Equivariant Diffusion Models
Structure-based Drug Design with Equivariant Diffusion Models
Arne Schneuing
Yuanqi Du
Charles Harris
Arian R. Jamasb
Ilia Igashov
...
Pietro Lió
Carla P. Gomes
Max Welling
Michael M. Bronstein
B. Correia
DiffM
36
194
0
24 Oct 2022
Boosting the Cycle Counting Power of Graph Neural Networks with
  I$^2$-GNNs
Boosting the Cycle Counting Power of Graph Neural Networks with I2^22-GNNs
Yinan Huang
Xingang Peng
Jianzhu Ma
Muhan Zhang
84
47
0
22 Oct 2022
A Survey on Graph Counterfactual Explanations: Definitions, Methods,
  Evaluation, and Research Challenges
A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
F. Giannotti
CML
27
30
0
21 Oct 2022
PEMP: Leveraging Physics Properties to Enhance Molecular Property
  Prediction
PEMP: Leveraging Physics Properties to Enhance Molecular Property Prediction
Yuancheng Sun
Yimeng Chen
Weizhi Ma
Wenhao Huang
Kang Liu
Zhiming Ma
Wei-Ying Ma
Yanyan Lan
20
7
0
18 Oct 2022
Forces are not Enough: Benchmark and Critical Evaluation for Machine
  Learning Force Fields with Molecular Simulations
Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations
Xiang Fu
Zhenghao Wu
Wujie Wang
T. Xie
S. Keten
Rafael Gómez-Bombarelli
Tommi Jaakkola
30
136
0
13 Oct 2022
Hierarchical Learning in Euclidean Neural Networks
Hierarchical Learning in Euclidean Neural Networks
Joshua A. Rackers
P. Rao
28
1
0
10 Oct 2022
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Cas van der Oord
Matthias Sachs
D. P. Kovács
Christoph Ortner
Gábor Csányi
41
64
0
09 Oct 2022
Machine learning frontier orbital energies of nanodiamonds
Machine learning frontier orbital energies of nanodiamonds
Thorren Kirschbaum
B. V. Seggern
J. Dzubiella
A. Bande
Frank Noé
AI4CE
18
3
0
30 Sep 2022
Improving Molecular Pretraining with Complementary Featurizations
Improving Molecular Pretraining with Complementary Featurizations
Yanqiao Zhu
Dingshuo Chen
Yuanqi Du
Yingze Wang
Qiang Liu
Shu Wu
AI4CE
36
6
0
29 Sep 2022
Learned Force Fields Are Ready For Ground State Catalyst Discovery
Learned Force Fields Are Ready For Ground State Catalyst Discovery
Michael Schaarschmidt
M. Rivière
A. Ganose
J. Spencer
Alex Gaunt
J. Kirkpatrick
Simon Axelrod
Peter W. Battaglia
Jonathan Godwin
21
10
0
26 Sep 2022
Periodic Graph Transformers for Crystal Material Property Prediction
Periodic Graph Transformers for Crystal Material Property Prediction
Keqiang Yan
Yi Liu
Yu-Ching Lin
Shuiwang Ji
AI4TS
88
84
0
23 Sep 2022
Predicting Protein-Ligand Binding Affinity via Joint Global-Local
  Interaction Modeling
Predicting Protein-Ligand Binding Affinity via Joint Global-Local Interaction Modeling
Yang Zhang
G. Zhou
Zhewei Wei
Hongteng Xu
27
9
0
18 Sep 2022
Multi-Task Mixture Density Graph Neural Networks for Predicting Cu-based
  Single-Atom Alloy Catalysts for CO2 Reduction Reaction
Multi-Task Mixture Density Graph Neural Networks for Predicting Cu-based Single-Atom Alloy Catalysts for CO2 Reduction Reaction
Chen Liang
Bo-Lan Wang
Shaogang Hao
Guangyong Chen
Pheng-Ann Heng
Xiaolong Zou
50
1
0
15 Sep 2022
Graph Neural Networks for Molecules
Graph Neural Networks for Molecules
Yuyang Wang
Zijie Li
A. Farimani
GNN
AI4CE
45
20
0
12 Sep 2022
Previous
123456789
Next