ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03123
  4. Cited By
Directional Message Passing for Molecular Graphs

Directional Message Passing for Molecular Graphs

6 March 2020
Johannes Klicpera
Janek Groß
Stephan Günnemann
ArXivPDFHTML

Papers citing "Directional Message Passing for Molecular Graphs"

50 / 450 papers shown
Title
Representation Learning of Geometric Trees
Representation Learning of Geometric Trees
Zheng Zhang
Allen Zhang
Ruth Nelson
Giorgio Ascoli
Liang Zhao
26
0
0
16 Aug 2024
Distribution Learning for Molecular Regression
Distribution Learning for Molecular Regression
Nima Shoghi
Pooya Shoghi
Anuroop Sriram
Abhishek Das
OOD
21
0
0
30 Jul 2024
Enhancing material property prediction with ensemble deep graph
  convolutional networks
Enhancing material property prediction with ensemble deep graph convolutional networks
Chowdhury Mohammad Abid Rahman
Ghadendra B. Bhandari
Nasser M. Nasrabadi
Aldo H. Romero
P. Gyawali
AI4CE
45
3
0
26 Jul 2024
Pre-training with Fractional Denoising to Enhance Molecular Property
  Prediction
Pre-training with Fractional Denoising to Enhance Molecular Property Prediction
Yuyan Ni
Shikun Feng
Xin Hong
Yuancheng Sun
Wei-Ying Ma
Zhiming Ma
Qiwei Ye
Yanyan Lan
AI4CE
36
10
0
14 Jul 2024
Improving Molecular Modeling with Geometric GNNs: an Empirical Study
Improving Molecular Modeling with Geometric GNNs: an Empirical Study
Ali Ramlaoui
Théo Saulus
Basile Terver
Victor Schmidt
David Rolnick
Fragkiskos D. Malliaros
Alexandre Duval
AI4CE
38
1
0
11 Jul 2024
MolTRES: Improving Chemical Language Representation Learning for
  Molecular Property Prediction
MolTRES: Improving Chemical Language Representation Learning for Molecular Property Prediction
Jun-Hyung Park
Yeachan Kim
Mingyu Lee
Hyuntae Park
SangKeun Lee
30
0
0
09 Jul 2024
Foundations and Frontiers of Graph Learning Theory
Foundations and Frontiers of Graph Learning Theory
Yu Huang
Min Zhou
Menglin Yang
Zhen Wang
Muhan Zhang
Jie Wang
Hong Xie
Hao Wang
Defu Lian
Enhong Chen
AI4CE
GNN
55
2
0
03 Jul 2024
FreeCG: Free the Design Space of Clebsch-Gordan Transform for Machine
  Learning Force Fields
FreeCG: Free the Design Space of Clebsch-Gordan Transform for Machine Learning Force Fields
Shihao Shao
Haoran Geng
Zun Wang
Qinghua Cui
3DV
35
0
0
02 Jul 2024
On the Expressive Power of Sparse Geometric MPNNs
On the Expressive Power of Sparse Geometric MPNNs
Yonatan Sverdlov
Nadav Dym
42
1
0
02 Jul 2024
GeoMFormer: A General Architecture for Geometric Molecular
  Representation Learning
GeoMFormer: A General Architecture for Geometric Molecular Representation Learning
Tianlang Chen
Shengjie Luo
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
AI4CE
38
5
0
24 Jun 2024
Geometric Self-Supervised Pretraining on 3D Protein Structures using
  Subgraphs
Geometric Self-Supervised Pretraining on 3D Protein Structures using Subgraphs
Michail Chatzianastasis
George Dasoulas
Michalis Vazirgiannis
SSL
21
0
0
20 Jun 2024
Evaluating representation learning on the protein structure universe
Evaluating representation learning on the protein structure universe
Arian R. Jamasb
Alex Morehead
Chaitanya K. Joshi
Zuobai Zhang
Kieran Didi
...
Charles Harris
Jian Tang
Jianlin Cheng
Pietro Lio
Tom L. Blundell
SSL
40
12
0
19 Jun 2024
Molecule Graph Networks with Many-body Equivariant Interactions
Molecule Graph Networks with Many-body Equivariant Interactions
Zetian Mao
Jiawen Li
Chen Liang
Diptesh Das
Masato Sumita
Koji Tsuda
Kelin Xia
Koji Tsuda
35
1
0
19 Jun 2024
Expressivity and Generalization: Fragment-Biases for Molecular GNNs
Expressivity and Generalization: Fragment-Biases for Molecular GNNs
Tom Wollschlager
Niklas Kemper
Leon Hetzel
Johanna Sommer
Stephan Günnemann
42
4
0
12 Jun 2024
Equivariance via Minimal Frame Averaging for More Symmetries and
  Efficiency
Equivariance via Minimal Frame Averaging for More Symmetries and Efficiency
Yuchao Lin
Jacob Helwig
Shurui Gui
Shuiwang Ji
39
7
0
11 Jun 2024
Multivector Neurons: Better and Faster O(n)-Equivariant Clifford Graph
  Neural Networks
Multivector Neurons: Better and Faster O(n)-Equivariant Clifford Graph Neural Networks
Cong Liu
David Ruhe
Patrick Forré
34
1
0
06 Jun 2024
Infusing Self-Consistency into Density Functional Theory Hamiltonian
  Prediction via Deep Equilibrium Models
Infusing Self-Consistency into Density Functional Theory Hamiltonian Prediction via Deep Equilibrium Models
Zun Wang
Chang-Shu Liu
Nianlong Zou
He Zhang
Xinran Wei
Lin Huang
Lijun Wu
Bin Shao
36
1
0
06 Jun 2024
Topological Neural Networks go Persistent, Equivariant, and Continuous
Topological Neural Networks go Persistent, Equivariant, and Continuous
Yogesh Verma
Amauri H Souza
Vikas K. Garg
AI4CE
38
4
0
05 Jun 2024
Neural Thermodynamic Integration: Free Energies from Energy-based
  Diffusion Models
Neural Thermodynamic Integration: Free Energies from Energy-based Diffusion Models
Bálint Máté
François Fleuret
Tristan Bereau
DiffM
40
2
0
04 Jun 2024
In-Context Learning of Physical Properties: Few-Shot Adaptation to
  Out-of-Distribution Molecular Graphs
In-Context Learning of Physical Properties: Few-Shot Adaptation to Out-of-Distribution Molecular Graphs
Grzegorz Kaszuba
Amirhossein D. Naghdi
Dario Massa
Stefanos Papanikolaou
Andrzej Jaszkiewicz
Piotr Sankowski
AI4CE
OODD
40
0
0
03 Jun 2024
Explainable Data-driven Modeling of Adsorption Energy in Heterogeneous
  Catalysis
Explainable Data-driven Modeling of Adsorption Energy in Heterogeneous Catalysis
Tirtha Vinchurkar
Janghoon Ock
A. Farimani
30
1
0
30 May 2024
UniIF: Unified Molecule Inverse Folding
UniIF: Unified Molecule Inverse Folding
Zhangyang Gao
Jue Wang
Cheng Tan
Lirong Wu
Yufei Huang
Siyuan Li
Zhirui Ye
Stan Z. Li
37
4
0
29 May 2024
SE3Set: Harnessing equivariant hypergraph neural networks for molecular
  representation learning
SE3Set: Harnessing equivariant hypergraph neural networks for molecular representation learning
Hongfei Wu
Lijun Wu
Guoqing Liu
Zhirong Liu
Bin Shao
Zun Wang
40
1
0
26 May 2024
E(n) Equivariant Topological Neural Networks
E(n) Equivariant Topological Neural Networks
Claudio Battiloro
Ege Karaismailoglu
Mauricio Tec
George Dasoulas
Michelle Audirac
Francesca Dominici
49
5
0
24 May 2024
Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations
Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations
Nicholas Gao
Stephan Günnemann
33
4
0
23 May 2024
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message
  Passing
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing
Viktor Zaverkin
Francesco Alesiani
Takashi Maruyama
Federico Errica
Henrik Christiansen
Makoto Takamoto
Nicolas Weber
Mathias Niepert
46
5
0
23 May 2024
Improved Canonicalization for Model Agnostic Equivariance
Improved Canonicalization for Model Agnostic Equivariance
Siba Smarak Panigrahi
Arnab Kumar Mondal
33
3
0
23 May 2024
Dielectric Tensor Prediction for Inorganic Materials Using Latent
  Information from Preferred Potential
Dielectric Tensor Prediction for Inorganic Materials Using Latent Information from Preferred Potential
Zetian Mao
Wenwen Li
Jethro Tan
30
2
0
15 May 2024
Could Chemical LLMs benefit from Message Passing
Could Chemical LLMs benefit from Message Passing
Jiaqing Xie
Ziheng Chi
30
0
0
14 May 2024
CaFA: Global Weather Forecasting with Factorized Attention on Sphere
CaFA: Global Weather Forecasting with Factorized Attention on Sphere
Zijie Li
Anthony Y. Zhou
Saurabh Patil
A. Farimani
39
6
0
12 May 2024
Overcoming systematic softening in universal machine learning
  interatomic potentials by fine-tuning
Overcoming systematic softening in universal machine learning interatomic potentials by fine-tuning
Bowen Deng
Yunyeong Choi
Peichen Zhong
Janosh Riebesell
Shashwat Anand
Zhuohan Li
KyuJung Jun
Kristin A. Persson
Gerbrand Ceder
AI4CE
32
16
0
11 May 2024
AdsorbDiff: Adsorbate Placement via Conditional Denoising Diffusion
AdsorbDiff: Adsorbate Placement via Conditional Denoising Diffusion
Adeesh Kolluru
John R. Kitchin
DiffM
42
4
0
07 May 2024
$\texttt{MiniMol}$: A Parameter-Efficient Foundation Model for Molecular
  Learning
MiniMol\texttt{MiniMol}MiniMol: A Parameter-Efficient Foundation Model for Molecular Learning
Kerstin Klaser
Bla.zej Banaszewski
S. Maddrell-Mander
Callum McLean
Luis Muller
Alipanah Parviz
Shenyang Huang
Andrew Fitzgibbon
AI4CE
43
5
0
23 Apr 2024
Molecular relaxation by reverse diffusion with time step prediction
Molecular relaxation by reverse diffusion with time step prediction
Khaled Kahouli
Stefaan S. P. Hessmann
Klaus-Robert Muller
Shinichi Nakajima
Stefan Gugler
Niklas W. A. Gebauer
DiffM
36
5
0
16 Apr 2024
HeMeNet: Heterogeneous Multichannel Equivariant Network for Protein
  Multitask Learning
HeMeNet: Heterogeneous Multichannel Equivariant Network for Protein Multitask Learning
Rong Han
Wenbing Huang
Lingxiao Luo
Xinyan Han
Jiaming Shen
Zhiqiang Zhang
Jun Zhou
Ting Chen
30
2
0
02 Apr 2024
A Comparative Study of Machine Learning Models Predicting Energetics of
  Interacting Defects
A Comparative Study of Machine Learning Models Predicting Energetics of Interacting Defects
Hao Yu
AI4CE
19
0
0
20 Mar 2024
Complete and Efficient Graph Transformers for Crystal Material Property
  Prediction
Complete and Efficient Graph Transformers for Crystal Material Property Prediction
Keqiang Yan
Cong Fu
Xiaofeng Qian
Xiaoning Qian
Shuiwang Ji
41
19
0
18 Mar 2024
Self-Consistency Training for Density-Functional-Theory Hamiltonian
  Prediction
Self-Consistency Training for Density-Functional-Theory Hamiltonian Prediction
He Zhang
Chang-Shu Liu
Zun Wang
Xinran Wei
Siyuan Liu
Nanning Zheng
Bin Shao
Tie-Yan Liu
46
4
0
14 Mar 2024
Generalizing Denoising to Non-Equilibrium Structures Improves
  Equivariant Force Fields
Generalizing Denoising to Non-Equilibrium Structures Improves Equivariant Force Fields
Yi-Lun Liao
Tess E. Smidt
Abhishek Das
DiffM
AI4CE
34
12
0
14 Mar 2024
On Diffusion Process in SE(3)-invariant Space
On Diffusion Process in SE(3)-invariant Space
Zihan Zhou
Ruiying Liu
Jiachen Zheng
Xiaoxue Wang
Tianshu Yu
DiffM
32
1
0
03 Mar 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
34
20
0
01 Mar 2024
DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based
  Drug Design
DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design
Jiaqi Guan
Xiangxin Zhou
Yuwei Yang
Yu Bao
Jian-wei Peng
Jianzhu Ma
Qiang Liu
Liang Wang
Quanquan Gu
27
68
0
26 Feb 2024
Pretraining Strategy for Neural Potentials
Pretraining Strategy for Neural Potentials
Zehua Zhang
Zijie Li
A. Farimani
AI4CE
42
0
0
24 Feb 2024
Cartesian atomic cluster expansion for machine learning interatomic
  potentials
Cartesian atomic cluster expansion for machine learning interatomic potentials
Bingqing Cheng
34
30
0
12 Feb 2024
Triplet Interaction Improves Graph Transformers: Accurate Molecular
  Graph Learning with Triplet Graph Transformers
Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
Md Shamim Hussain
Mohammed J. Zaki
D. Subramanian
ViT
28
5
0
07 Feb 2024
On the Completeness of Invariant Geometric Deep Learning Models
On the Completeness of Invariant Geometric Deep Learning Models
Zian Li
Xiyuan Wang
Shijia Kang
Muhan Zhang
33
2
0
07 Feb 2024
Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks
Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks
D. M. Nguyen
Nina Lukashina
Tai Nguyen
An T. Le
TrungTin Nguyen
Nhat Ho
Jan Peters
Daniel Sonntag
Viktor Zaverkin
Mathias Niepert
33
5
0
03 Feb 2024
PF-GNN: Differentiable particle filtering based approximation of
  universal graph representations
PF-GNN: Differentiable particle filtering based approximation of universal graph representations
Mohammed Haroon Dupty
Yanfei Dong
W. Lee
26
13
0
31 Jan 2024
ADA-GNN: Atom-Distance-Angle Graph Neural Network for Crystal Material
  Property Prediction
ADA-GNN: Atom-Distance-Angle Graph Neural Network for Crystal Material Property Prediction
Jiao Huang
Qianli Xing
Jinglong Ji
Bo Yang
22
3
0
22 Jan 2024
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt
  Tensor Products
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Shengjie Luo
Tianlang Chen
Aditi S. Krishnapriyan
25
19
0
18 Jan 2024
Previous
123456789
Next