ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03123
  4. Cited By
Directional Message Passing for Molecular Graphs

Directional Message Passing for Molecular Graphs

6 March 2020
Johannes Klicpera
Janek Groß
Stephan Günnemann
ArXivPDFHTML

Papers citing "Directional Message Passing for Molecular Graphs"

50 / 450 papers shown
Title
MagNet: A Neural Network for Directed Graphs
MagNet: A Neural Network for Directed Graphs
Xitong Zhang
Yixuan He
Nathan Brugnone
Michael Perlmutter
M. Hirn
13
124
0
22 Feb 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
28
975
0
19 Feb 2021
Spherical Message Passing for 3D Graph Networks
Spherical Message Passing for 3D Graph Networks
Yi Liu
Limei Wang
Meng Liu
Xuan Zhang
Bora Oztekin
Shuiwang Ji
GNN
22
197
0
09 Feb 2021
Equivariant message passing for the prediction of tensorial properties
  and molecular spectra
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
25
511
0
05 Feb 2021
A Universal Framework for Featurization of Atomistic Systems
A Universal Framework for Featurization of Atomistic Systems
Xiangyun Lei
A. Medford
AI4CE
15
19
0
04 Feb 2021
Differentiable sampling of molecular geometries with uncertainty-based
  adversarial attacks
Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks
Daniel Schwalbe-Koda
Aik Rui Tan
Rafael Gómez-Bombarelli
AAML
21
60
0
27 Jan 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
200
1,232
0
08 Jan 2021
Symmetry-adapted graph neural networks for constructing molecular
  dynamics force fields
Symmetry-adapted graph neural networks for constructing molecular dynamics force fields
Zun Wang
Chong Wang
Sibo Zhao
Shiqiao Du
Yong Xu
B. Gu
W. Duan
AI4CE
21
14
0
08 Jan 2021
Deep Multi-attribute Graph Representation Learning on Protein Structures
Deep Multi-attribute Graph Representation Learning on Protein Structures
Tian Xia
Wei-Shinn Ku
GNN
AI4CE
13
1
0
22 Dec 2020
LieTransformer: Equivariant self-attention for Lie Groups
LieTransformer: Equivariant self-attention for Lie Groups
M. Hutchinson
Charline Le Lan
Sheheryar Zaidi
Emilien Dupont
Yee Whye Teh
Hyunjik Kim
12
111
0
20 Dec 2020
Distance-aware Molecule Graph Attention Network for Drug-Target Binding
  Affinity Prediction
Distance-aware Molecule Graph Attention Network for Drug-Target Binding Affinity Prediction
Jingbo Zhou
Shuangli Li
Liang Huang
Haoyi Xiong
Fan Wang
Tong Bill Xu
Hui Xiong
Dejing Dou
GNN
16
12
0
17 Dec 2020
Molecular machine learning with conformer ensembles
Molecular machine learning with conformer ensembles
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
4
49
0
15 Dec 2020
Utilising Graph Machine Learning within Drug Discovery and Development
Utilising Graph Machine Learning within Drug Discovery and Development
Thomas Gaudelet
Ben Day
Arian R. Jamasb
Jyothish Soman
Cristian Regep
...
Jian Tang
D. Roblin
Tom L. Blundell
M. Bronstein
J. Taylor-King
AI4CE
19
36
0
09 Dec 2020
Advanced Graph and Sequence Neural Networks for Molecular Property
  Prediction and Drug Discovery
Advanced Graph and Sequence Neural Networks for Molecular Property Prediction and Drug Discovery
Zhengyang Wang
Meng Liu
Youzhi Luo
Zhao Xu
Yaochen Xie
...
Lei Cai
Q. Qi
Zhuoning Yuan
Tianbao Yang
Shuiwang Ji
25
100
0
02 Dec 2020
Fast and Uncertainty-Aware Directional Message Passing for
  Non-Equilibrium Molecules
Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules
Johannes Klicpera
Shankari Giri
Johannes T. Margraf
Stephan Günnemann
9
313
0
28 Nov 2020
Attention-Based Learning on Molecular Ensembles
Attention-Based Learning on Molecular Ensembles
Kangway V Chuang
Michael J. Keiser
14
8
0
25 Nov 2020
Message Passing Networks for Molecules with Tetrahedral Chirality
Message Passing Networks for Molecules with Tetrahedral Chirality
L. Pattanaik
O. Ganea
Ian Coley
K. Jensen
W. Green
Connor W. Coley
GNN
16
23
0
24 Nov 2020
Comparison of Atom Representations in Graph Neural Networks for
  Molecular Property Prediction
Comparison of Atom Representations in Graph Neural Networks for Molecular Property Prediction
Agnieszka Pocha
Tomasz Danel
Lukasz Maziarka
GNN
21
7
0
23 Nov 2020
Spherical convolutions on molecular graphs for protein model quality
  assessment
Spherical convolutions on molecular graphs for protein model quality assessment
Ilia Igashov
Nikita Pavlichenko
Sergei Grudinin
14
14
0
16 Nov 2020
Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for
  Molecular Structures
Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures
Shuo-feng Zhang
Yang Liu
Lei Xie
GNN
16
60
0
15 Nov 2020
Automorphic Equivalence-aware Graph Neural Network
Automorphic Equivalence-aware Graph Neural Network
Fengli Xu
Quanming Yao
Pan Hui
Yong Li
13
5
0
09 Nov 2020
Multi-task learning for electronic structure to predict and explore
  molecular potential energy surfaces
Multi-task learning for electronic structure to predict and explore molecular potential energy surfaces
Zhuoran Qiao
Feizhi Ding
Matthew Welborn
P. J. Bygrave
Daniel G. A. Smith
Anima Anandkumar
F. Manby
Thomas F. Miller
28
7
0
05 Nov 2020
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
226
503
0
20 Oct 2020
An Introduction to Electrocatalyst Design using Machine Learning for
  Renewable Energy Storage
An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage
C. L. Zitnick
L. Chanussot
Abhishek Das
Siddharth Goyal
Javier Heras-Domingo
...
Kevin Tran
Brandon M. Wood
Junwoong Yoon
Devi Parikh
Zachary W. Ulissi
12
70
0
14 Oct 2020
Machine Learning Force Fields
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
20
886
0
14 Oct 2020
Directional Graph Networks
Directional Graph Networks
Dominique Beaini
Saro Passaro
Vincent Létourneau
William L. Hamilton
Gabriele Corso
Pietro Lió
42
184
0
06 Oct 2020
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule
  Properties
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties
Zeren Shui
George Karypis
29
62
0
26 Sep 2020
Chemical Property Prediction Under Experimental Biases
Chemical Property Prediction Under Experimental Biases
Yang Liu
H. Kashima
AI4CE
25
1
0
18 Sep 2020
Learning from Protein Structure with Geometric Vector Perceptrons
Learning from Protein Structure with Geometric Vector Perceptrons
Bowen Jing
Stephan Eismann
Patricia Suriana
Raphael J. L. Townshend
R. Dror
GNN
3DV
20
470
0
03 Sep 2020
Efficient Robustness Certificates for Discrete Data: Sparsity-Aware
  Randomized Smoothing for Graphs, Images and More
Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing for Graphs, Images and More
Aleksandar Bojchevski
Johannes Klicpera
Stephan Günnemann
AAML
50
83
0
29 Aug 2020
Relevance of Rotationally Equivariant Convolutions for Predicting
  Molecular Properties
Relevance of Rotationally Equivariant Convolutions for Predicting Molecular Properties
Benjamin Kurt Miller
Mario Geiger
Tess E. Smidt
Frank Noé
16
75
0
19 Aug 2020
TUDataset: A collection of benchmark datasets for learning with graphs
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
46
780
0
16 Jul 2020
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
  Atomic-Orbital Features
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features
Zhuoran Qiao
Matthew Welborn
Anima Anandkumar
F. Manby
Thomas F. Miller
AI4CE
16
214
0
15 Jul 2020
Intrinsic-Extrinsic Convolution and Pooling for Learning on 3D Protein
  Structures
Intrinsic-Extrinsic Convolution and Pooling for Learning on 3D Protein Structures
Pedro Hermosilla
M. Schäfer
Matěj Lang
Gloria Fackelmann
Pere-Pau Vázquez
Barbora Kozlíková
M. Krone
Tobias Ritschel
Timo Ropinski
21
2
0
13 Jul 2020
Distance-Geometric Graph Convolutional Network (DG-GCN) for
  Three-Dimensional (3D) Graphs
Distance-Geometric Graph Convolutional Network (DG-GCN) for Three-Dimensional (3D) Graphs
Daniel T. Chang
GNN
9
1
0
06 Jul 2020
Expressive Power of Invariant and Equivariant Graph Neural Networks
Expressive Power of Invariant and Equivariant Graph Neural Networks
Waïss Azizian
Marc Lelarge
20
111
0
28 Jun 2020
Hierarchical Inter-Message Passing for Learning on Molecular Graphs
Hierarchical Inter-Message Passing for Learning on Molecular Graphs
Matthias Fey
Jan-Gin Yuen
F. Weichert
GNN
28
86
0
22 Jun 2020
Self-Supervised Graph Transformer on Large-Scale Molecular Data
Self-Supervised Graph Transformer on Large-Scale Molecular Data
Yu Rong
Yatao Bian
Tingyang Xu
Wei-yang Xie
Ying Wei
Wenbing Huang
Junzhou Huang
AI4CE
6
25
0
18 Jun 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism
  Counting
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
S. Zafeiriou
M. Bronstein
43
423
0
16 Jun 2020
Weisfeiler-Lehman Embedding for Molecular Graph Neural Networks
Weisfeiler-Lehman Embedding for Molecular Graph Neural Networks
Katsuhiko Ishiguro
Kenta Oono
K. Hayashi
GNN
15
4
0
12 Jun 2020
GEOM: Energy-annotated molecular conformations for property prediction
  and molecular generation
GEOM: Energy-annotated molecular conformations for property prediction and molecular generation
Simon Axelrod
Rafael Gómez-Bombarelli
3DV
AI4CE
23
205
0
09 Jun 2020
Graph-Aware Transformer: Is Attention All Graphs Need?
Graph-Aware Transformer: Is Attention All Graphs Need?
Sang-yong Yoo
Young-Seok Kim
Kang Lee
Kuhwan Jeong
Junhwi Choi
Hoshik Lee
Y. S. Choi
GNN
14
11
0
09 Jun 2020
Multi-View Graph Neural Networks for Molecular Property Prediction
Multi-View Graph Neural Networks for Molecular Property Prediction
Hehuan Ma
Yatao Bian
Yu Rong
Wenbing Huang
Tingyang Xu
Wei-yang Xie
Geyan Ye
Junzhou Huang
19
44
0
17 May 2020
Isometric Transformation Invariant and Equivariant Graph Convolutional
  Networks
Isometric Transformation Invariant and Equivariant Graph Convolutional Networks
Masanobu Horie
Naoki Morita
Toshiaki Hishinuma
Yushi Ihara
Naoto Mitsume
GNN
8
23
0
13 May 2020
A Perspective on Deep Learning for Molecular Modeling and Simulations
A Perspective on Deep Learning for Molecular Modeling and Simulations
Jun Zhang
Yao-Kun Lei
Zhen Zhang
Junhan Chang
Maodong Li
Xu Han
Lijiang Yang
Y. Yang
Y. Gao
AI4CE
24
8
0
25 Apr 2020
Representations of molecules and materials for interpolation of
  quantum-mechanical simulations via machine learning
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
Marcel F. Langer
Alex Goessmann
M. Rupp
AI4CE
15
92
0
26 Mar 2020
Neural Message Passing on High Order Paths
Neural Message Passing on High Order Paths
Daniel Flam-Shepherd
Tony C Wu
Pascal Friederich
Alán Aspuru-Guzik
GNN
AI4CE
16
49
0
24 Feb 2020
Generalization and Representational Limits of Graph Neural Networks
Generalization and Representational Limits of Graph Neural Networks
Vikas K. Garg
Stefanie Jegelka
Tommi Jaakkola
GNN
26
302
0
14 Feb 2020
TeaNet: universal neural network interatomic potential inspired by
  iterative electronic relaxations
TeaNet: universal neural network interatomic potential inspired by iterative electronic relaxations
So Takamoto
S. Izumi
Ju Li
GNN
19
76
0
02 Dec 2019
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
169
1,775
0
02 Mar 2017
Previous
123456789