ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03123
  4. Cited By
Directional Message Passing for Molecular Graphs

Directional Message Passing for Molecular Graphs

6 March 2020
Johannes Klicpera
Janek Groß
Stephan Günnemann
ArXivPDFHTML

Papers citing "Directional Message Passing for Molecular Graphs"

50 / 450 papers shown
Title
Multimodal learning with graphs
Multimodal learning with graphs
Yasha Ektefaie
George Dasoulas
Ayush Noori
Maha Farhat
Marinka Zitnik
51
82
0
07 Sep 2022
Domain-informed graph neural networks: a quantum chemistry case study
Domain-informed graph neural networks: a quantum chemistry case study
Jay Morgan
A. Paiement
C. Klinke
GNN
32
4
0
25 Aug 2022
From Static to Dynamic Structures: Improving Binding Affinity Prediction
  with a Graph-Based Deep Learning Model
From Static to Dynamic Structures: Improving Binding Affinity Prediction with a Graph-Based Deep Learning Model
Yaosen Min
Ye Wei
Peizhuo Wang
Xiao-tong Wang
Han Li
...
Yu Shi
Yingheng Wang
Ji Wu
Dan Zhao
Jianyang Zeng
AI4CE
13
2
0
19 Aug 2022
DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular
  Simulation
DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular Simulation
Duoduo Zhang
Hangrui Bi
Fu-Zhi Dai
Wanrun Jiang
Linfeng Zhang
Han Wang
AI4CE
32
37
0
17 Aug 2022
Conditional Antibody Design as 3D Equivariant Graph Translation
Conditional Antibody Design as 3D Equivariant Graph Translation
Xiangzhe Kong
Wenbing Huang
Yang Liu
DiffM
21
84
0
12 Aug 2022
GEM-2: Next Generation Molecular Property Prediction Network by Modeling
  Full-range Many-body Interactions
GEM-2: Next Generation Molecular Property Prediction Network by Modeling Full-range Many-body Interactions
Lihang Liu
Donglong He
Xiaomin Fang
Shanzhuo Zhang
Fan Wang
Jingzhou He
Hua-Hong Wu
19
3
0
11 Aug 2022
Motif-based Graph Representation Learning with Application to Chemical
  Molecules
Motif-based Graph Representation Learning with Application to Chemical Molecules
Yifei Wang
Shiyang Chen
Guobin Chen
Ethan Shurberg
Hang Liu
Pengyu Hong
GNN
25
13
0
09 Aug 2022
Graph neural networks for materials science and chemistry
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
39
370
0
05 Aug 2022
Curvature-informed multi-task learning for graph networks
Curvature-informed multi-task learning for graph networks
Alexander New
M. Pekala
Nam Q. Le
Janna Domenico
C. Piatko
Christopher D. Stiles
25
4
0
02 Aug 2022
Graph Neural Network with Local Frame for Molecular Potential Energy
  Surface
Graph Neural Network with Local Frame for Molecular Potential Energy Surface
Xiyuan Wang
Muhan Zhang
38
9
0
01 Aug 2022
Physical Pooling Functions in Graph Neural Networks for Molecular
  Property Prediction
Physical Pooling Functions in Graph Neural Networks for Molecular Property Prediction
Artur M. Schweidtmann
Jan G. Rittig
Jana M. Weber
Martin Grohe
Manuel Dahmen
K. Leonhard
Alexander Mitsos
14
24
0
27 Jul 2022
Bessel Equivariant Networks for Inversion of Transmission Effects in
  Multi-Mode Optical Fibres
Bessel Equivariant Networks for Inversion of Transmission Effects in Multi-Mode Optical Fibres
Joshua Mitton
S. Mekhail
M. Padgett
Daniele Faccio
Marco Aversa
Roderick Murray-Smith
13
1
0
26 Jul 2022
Learning Hierarchical Protein Representations via Complete 3D Graph
  Networks
Learning Hierarchical Protein Representations via Complete 3D Graph Networks
Limei Wang
Haoran Liu
Yi Liu
Jerry Kurtin
Shuiwang Ji
GNN
28
55
0
26 Jul 2022
Graph neural networks for the prediction of molecular structure-property
  relationships
Graph neural networks for the prediction of molecular structure-property relationships
Jan G. Rittig
Qing-Bin Gao
Manuel Dahmen
Alexander Mitsos
Artur M. Schweidtmann
AI4CE
11
10
0
25 Jul 2022
Operation-Level Performance Benchmarking of Graph Neural Networks for
  Scientific Applications
Operation-Level Performance Benchmarking of Graph Neural Networks for Scientific Applications
Ryien Hosseini
F. Simini
V. Vishwanath
GNN
15
2
0
20 Jul 2022
e3nn: Euclidean Neural Networks
e3nn: Euclidean Neural Networks
Mario Geiger
Tess E. Smidt
35
173
0
18 Jul 2022
Energy-Motivated Equivariant Pretraining for 3D Molecular Graphs
Energy-Motivated Equivariant Pretraining for 3D Molecular Graphs
Rui Jiao
Jiaqi Han
Wenbing Huang
Yu Rong
Yang Liu
AI4CE
30
45
0
18 Jul 2022
Unified 2D and 3D Pre-Training of Molecular Representations
Unified 2D and 3D Pre-Training of Molecular Representations
Jinhua Zhu
Yingce Xia
Lijun Wu
Shufang Xie
Tao Qin
Wen-gang Zhou
Houqiang Li
Tie-Yan Liu
AI4CE
54
67
0
14 Jul 2022
Boosting Heterogeneous Catalyst Discovery by Structurally Constrained
  Deep Learning Models
Boosting Heterogeneous Catalyst Discovery by Structurally Constrained Deep Learning Models
A. Korovin
Innokentiy S. Humonen
A. Samtsevich
R. Eremin
Artem I. Vasilyev
V. Lazarev
S. Budennyy
GNN
14
5
0
11 Jul 2022
Graph-based Molecular Representation Learning
Graph-based Molecular Representation Learning
Zhichun Guo
Kehan Guo
B. Nan
Yijun Tian
Roshni G. Iyer
...
Olaf Wiest
Xiangliang Zhang
Wei Wang
Chuxu Zhang
Nitesh V. Chawla
AI4CE
20
60
0
08 Jul 2022
Spherical Channels for Modeling Atomic Interactions
Spherical Channels for Modeling Atomic Interactions
C. L. Zitnick
Abhishek Das
Adeesh Kolluru
Janice Lan
Muhammed Shuaibi
Anuroop Sriram
Zachary W. Ulissi
Brandon M. Wood
79
58
0
29 Jun 2022
Persistent homology-based descriptor for machine-learning potential of
  amorphous structures
Persistent homology-based descriptor for machine-learning potential of amorphous structures
E. Minamitani
I. Obayashi
Koji Shimizu
S. Watanabe
AI4CE
17
11
0
28 Jun 2022
FlowX: Towards Explainable Graph Neural Networks via Message Flows
FlowX: Towards Explainable Graph Neural Networks via Message Flows
Shurui Gui
Hao Yuan
Jie Wang
Qicheng Lao
Kang Li
Shuiwang Ji
32
11
0
26 Jun 2022
Edge Direction-invariant Graph Neural Networks for Molecular Dipole
  Moments Prediction
Edge Direction-invariant Graph Neural Networks for Molecular Dipole Moments Prediction
Yang Jeong Park
GNN
16
1
0
26 Jun 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
  Graphs
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
77
213
0
23 Jun 2022
Graph Neural Networks for Temperature-Dependent Activity Coefficient
  Prediction of Solutes in Ionic Liquids
Graph Neural Networks for Temperature-Dependent Activity Coefficient Prediction of Solutes in Ionic Liquids
Jan G. Rittig
Karim Ben Hicham
Artur M. Schweidtmann
Manuel Dahmen
Alexander Mitsos
8
42
0
23 Jun 2022
Ordered Subgraph Aggregation Networks
Ordered Subgraph Aggregation Networks
Chao Qian
Gaurav Rattan
Floris Geerts
Christopher Morris
Mathias Niepert
41
56
0
22 Jun 2022
Cluster Generation via Deep Energy-Based Model
Cluster Generation via Deep Energy-Based Model
A. Y. Artsukevich
S. Lepeshkin
21
0
0
17 Jun 2022
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide
  Electrocatalysts
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts
Richard Tran
Janice Lan
Muhammed Shuaibi
Brandon M. Wood
Siddharth Goyal
...
Jehad Abed
Oleksandr Voznyy
Edward H. Sargent
Zachary W. Ulissi
C. L. Zitnick
28
170
0
17 Jun 2022
Maximum Class Separation as Inductive Bias in One Matrix
Maximum Class Separation as Inductive Bias in One Matrix
Tejaswi Kasarla
Gertjan J. Burghouts
Max van Spengler
Elise van der Pol
Rita Cucchiara
Pascal Mettes
26
22
0
17 Jun 2022
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular
  Graphs
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular Graphs
Limei Wang
Yi Liu
Yu-Ching Lin
Hao Liu
Shuiwang Ji
GNN
38
89
0
17 Jun 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast
  and Accurate Force Fields
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
36
441
0
15 Jun 2022
MetaTPTrans: A Meta Learning Approach for Multilingual Code
  Representation Learning
MetaTPTrans: A Meta Learning Approach for Multilingual Code Representation Learning
Weiguo Pian
Hanyu Peng
Xunzhu Tang
Tiezhu Sun
Haoye Tian
Andrew Habib
Jacques Klein
Tegawende F. Bissyande
11
10
0
13 Jun 2022
Efficient and Accurate Physics-aware Multiplex Graph Neural Networks for
  3D Small Molecules and Macromolecule Complexes
Efficient and Accurate Physics-aware Multiplex Graph Neural Networks for 3D Small Molecules and Macromolecule Complexes
Shuo-feng Zhang
Yang Liu
Lei Xie
GNN
AI4CE
17
12
0
06 Jun 2022
Graph Machine Learning for Design of High-Octane Fuels
Graph Machine Learning for Design of High-Octane Fuels
Jan G. Rittig
Martin Ritzert
Artur M. Schweidtmann
Stefanie Winkler
Jana M. Weber
P. Morsch
K. Heufer
Martin Grohe
Alexander Mitsos
Manuel Dahmen
15
23
0
01 Jun 2022
Pre-training via Denoising for Molecular Property Prediction
Pre-training via Denoising for Molecular Property Prediction
Sheheryar Zaidi
Michael Schaarschmidt
James Martens
Hyunjik Kim
Yee Whye Teh
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Razvan Pascanu
Jonathan Godwin
DiffM
AI4CE
15
121
0
31 May 2022
Contrastive Representation Learning for 3D Protein Structures
Contrastive Representation Learning for 3D Protein Structures
Pedro Hermosilla
Timo Ropinski
3DV
46
51
0
31 May 2022
3D Graph Contrastive Learning for Molecular Property Prediction
Kisung Moon
Sunyoung Kwon
13
17
0
31 May 2022
Sampling-free Inference for Ab-Initio Potential Energy Surface Networks
Sampling-free Inference for Ab-Initio Potential Energy Surface Networks
Nicholas Gao
Stephan Günnemann
DiffM
30
18
0
30 May 2022
Spectral Maps for Learning on Subgraphs
Spectral Maps for Learning on Subgraphs
Marco Pegoraro
R. Marin
Arianna Rampini
Simone Melzi
Luca Cosmo
Emanuele Rodolà
12
2
0
30 May 2022
So3krates: Equivariant attention for interactions on arbitrary
  length-scales in molecular systems
So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems
J. Frank
Oliver T. Unke
Klaus-Robert Muller
11
44
0
28 May 2022
Representing Polymers as Periodic Graphs with Learned Descriptors for
  Accurate Polymer Property Predictions
Representing Polymers as Periodic Graphs with Learned Descriptors for Accurate Polymer Property Predictions
Evan R. Antoniuk
Peggy Li
B. Kailkhura
A. Hiszpanski
25
31
0
27 May 2022
SS-GNN: A Simple-Structured Graph Neural Network for Affinity Prediction
SS-GNN: A Simple-Structured Graph Neural Network for Affinity Prediction
Shuke Zhang
Yan Jin
Tianmeng Liu
Qi Wang
Zhaohui Zhang
Shuliang Zhao
Bo Shan
25
32
0
25 May 2022
Asynchronous Neural Networks for Learning in Graphs
Asynchronous Neural Networks for Learning in Graphs
Lukas Faber
Roger Wattenhofer
GNN
14
3
0
24 May 2022
Tyger: Task-Type-Generic Active Learning for Molecular Property
  Prediction
Tyger: Task-Type-Generic Active Learning for Molecular Property Prediction
Kuangqi Zhou
Kaixin Wang
Jiashi Feng
Jian Tang
Tingyang Xu
Xinchao Wang
21
1
0
23 May 2022
A graph representation of molecular ensembles for polymer property
  prediction
A graph representation of molecular ensembles for polymer property prediction
Matteo Aldeghi
Connor W. Coley
AI4CE
19
41
0
17 May 2022
3DLinker: An E(3) Equivariant Variational Autoencoder for Molecular
  Linker Design
3DLinker: An E(3) Equivariant Variational Autoencoder for Molecular Linker Design
Yinan Huang
Xing Peng
Jianzhu Ma
Muhan Zhang
BDL
30
47
0
15 May 2022
Discovering and Explaining the Representation Bottleneck of Graph Neural
  Networks from Multi-order Interactions
Discovering and Explaining the Representation Bottleneck of Graph Neural Networks from Multi-order Interactions
Fang Wu
Siyuan Li
Lirong Wu
Dragomir R. Radev
Stan Z. Li
27
2
0
15 May 2022
Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets
Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets
Xingang Peng
Shitong Luo
Jiaqi Guan
Qi Xie
Jian-wei Peng
Jianzhu Ma
25
176
0
15 May 2022
The Design Space of E(3)-Equivariant Atom-Centered Interatomic
  Potentials
The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials
Ilyes Batatia
Simon L. Batzner
D. P. Kovács
Albert Musaelian
G. Simm
R. Drautz
Christoph Ortner
Boris Kozinsky
Gábor Csányi
21
133
0
13 May 2022
Previous
123456789
Next