ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03123
  4. Cited By
Directional Message Passing for Molecular Graphs

Directional Message Passing for Molecular Graphs

6 March 2020
Johannes Klicpera
Janek Groß
Stephan Günnemann
ArXivPDFHTML

Papers citing "Directional Message Passing for Molecular Graphs"

50 / 450 papers shown
Title
Structure-based out-of-distribution (OOD) materials property prediction:
  a benchmark study
Structure-based out-of-distribution (OOD) materials property prediction: a benchmark study
Sadman Sadeed Omee
Nihang Fu
Rongzhi Dong
Ming Hu
Jianjun Hu
OOD
31
17
0
16 Jan 2024
On the Expressive Power of Graph Neural Networks
Ashwin Nalwade
Kelly Marshall
Axel Eladi
Umang Sharma
19
0
0
03 Jan 2024
Molecular Hypergraph Neural Networks
Molecular Hypergraph Neural Networks
Junwu Chen
Philippe Schwaller
GNN
44
10
0
20 Dec 2023
Accelerating the prediction of inorganic surfaces with machine learning
  interatomic potentials
Accelerating the prediction of inorganic surfaces with machine learning interatomic potentials
Kyle Noordhoek
Christopher J. Bartel
AI4CE
22
6
0
18 Dec 2023
Non-Euclidean Spatial Graph Neural Network
Non-Euclidean Spatial Graph Neural Network
Zhengwu Zhang
Sirui Li
Jingcheng Zhou
Junxiang Wang
Abhinav Angirekula
Allen Zhang
Liang Zhao
GNN
19
0
0
17 Dec 2023
SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive
  Molecular Property Prediction
SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive Molecular Property Prediction
Andac Demir
Francis Prael
B. Kiziltan
19
2
0
12 Dec 2023
Predicting and Interpreting Energy Barriers of Metallic Glasses with
  Graph Neural Networks
Predicting and Interpreting Energy Barriers of Metallic Glasses with Graph Neural Networks
Haoyu Li
Shichang Zhang
Longwen Tang
Mathieu Bauchy
Yizhou Sun
AI4CE
45
1
0
08 Dec 2023
PerCNet: Periodic Complete Representation for Crystal Graphs
PerCNet: Periodic Complete Representation for Crystal Graphs
Jiao Huang
Qianli Xing
Jinglong Ji
Bo Yang
34
1
0
03 Dec 2023
GlycoNMR: Dataset and benchmarks for NMR chemical shift prediction of
  carbohydrates with graph neural networks
GlycoNMR: Dataset and benchmarks for NMR chemical shift prediction of carbohydrates with graph neural networks
Zizhang Chen
R. P. Badman
Lachele Foley
Robert Woods
Pengyu Hong
38
0
0
28 Nov 2023
A Universal Framework for Accurate and Efficient Geometric Deep Learning
  of Molecular Systems
A Universal Framework for Accurate and Efficient Geometric Deep Learning of Molecular Systems
Shuo-feng Zhang
Yang Liu
Lei Xie
AI4CE
GNN
PINN
31
10
0
19 Nov 2023
Equivariant Neural Operator Learning with Graphon Convolution
Equivariant Neural Operator Learning with Graphon Convolution
Chaoran Cheng
Jian-wei Peng
16
4
0
17 Nov 2023
Multiparameter Persistent Homology for Molecular Property Prediction
Multiparameter Persistent Homology for Molecular Property Prediction
Andac Demir
B. Kiziltan
22
1
0
17 Nov 2023
Gradual Optimization Learning for Conformational Energy Minimization
Gradual Optimization Learning for Conformational Energy Minimization
Artem Tsypin
L. Ugadiarov
Kuzma Khrabrov
Alexander Telepov
Egor Rumiantsev
Alexey Skrynnik
Aleksandr I. Panov
Dmitry Vetrov
E. Tutubalina
Artur Kadurin
24
1
0
05 Nov 2023
Sliced Denoising: A Physics-Informed Molecular Pre-Training Method
Sliced Denoising: A Physics-Informed Molecular Pre-Training Method
Yuyan Ni
Shikun Feng
Wei-Ying Ma
Zhiming Ma
Yanyan Lan
DiffM
AI4CE
29
10
0
03 Nov 2023
Investigating the Behavior of Diffusion Models for Accelerating
  Electronic Structure Calculations
Investigating the Behavior of Diffusion Models for Accelerating Electronic Structure Calculations
D. Rothchild
Andrew S. Rosen
Eric Taw
Connie Robinson
Joseph E. Gonzalez
Aditi S. Krishnapriyan
DiffM
26
2
0
02 Nov 2023
Generating QM1B with PySCF$_{\text{IPU}}$
Generating QM1B with PySCFIPU_{\text{IPU}}IPU​
Alexander Mathiasen
Hatem Helal
Kerstin Klaser
Paul Balanca
Josef Dean
Carlo Luschi
Dominique Beaini
Andrew Fitzgibbon
Dominic Masters
25
1
0
02 Nov 2023
The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct
  Air Capture
The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture
Anuroop Sriram
Sihoon Choi
Xiaohan Yu
Logan M. Brabson
Abhishek Das
Zachary W. Ulissi
Matthew Uyttendaele
A. Medford
D. Sholl
AI4CE
27
35
0
01 Nov 2023
Role of Structural and Conformational Diversity for Machine Learning
  Potentials
Role of Structural and Conformational Diversity for Machine Learning Potentials
Nikhil Shenoy
Prudencio Tossou
Emmanuel Noutahi
Hadrien Mary
Dominique Beaini
Jiarui Ding
AI4CE
17
0
0
30 Oct 2023
Facilitating Graph Neural Networks with Random Walk on Simplicial
  Complexes
Facilitating Graph Neural Networks with Random Walk on Simplicial Complexes
Cai Zhou
Xiyuan Wang
Muhan Zhang
36
14
0
30 Oct 2023
Towards Combinatorial Generalization for Catalysts: A Kohn-Sham
  Charge-Density Approach
Towards Combinatorial Generalization for Catalysts: A Kohn-Sham Charge-Density Approach
Phillip Pope
David Jacobs
24
3
0
28 Oct 2023
From Molecules to Materials: Pre-training Large Generalizable Models for
  Atomic Property Prediction
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
Nima Shoghi
Adeesh Kolluru
John R. Kitchin
Zachary W. Ulissi
C. L. Zitnick
Brandon M. Wood
AI4CE
24
32
0
25 Oct 2023
Improving Molecular Properties Prediction Through Latent Space Fusion
Improving Molecular Properties Prediction Through Latent Space Fusion
Eduardo Soares
Akihiro Kishimoto
E. V. Brazil
Seiji Takeda
Hiroshi Kajino
Renato F. G. Cerqueira
BDL
AI4CE
18
2
0
20 Oct 2023
Learning Interatomic Potentials at Multiple Scales
Learning Interatomic Potentials at Multiple Scales
Xiang Fu
Albert Musaelian
Anders Johansson
Tommi Jaakkola
Boris Kozinsky
29
2
0
20 Oct 2023
MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design
MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design
Xiang Fu
Tian Xie
Andrew S. Rosen
Tommi Jaakkola
Jake A. Smith
DiffM
36
9
0
16 Oct 2023
D2 Pruning: Message Passing for Balancing Diversity and Difficulty in
  Data Pruning
D2 Pruning: Message Passing for Balancing Diversity and Difficulty in Data Pruning
A. Maharana
Prateek Yadav
Mohit Bansal
24
28
0
11 Oct 2023
On Accelerating Diffusion-based Molecular Conformation Generation in SE(3)-invariant Space
Zihan Zhou
Ruiying Liu
Tianshu Yu
DiffM
30
0
0
07 Oct 2023
Towards Foundational Models for Molecular Learning on Large-Scale
  Multi-Task Datasets
Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets
Dominique Beaini
Shenyang Huang
Joao Alex Cunha
Zhiyi Li
Gabriela Moisescu-Pareja
...
Thérence Bois
Andrew Fitzgibbon
Bla.zej Banaszewski
Chad Martin
Dominic Masters
AI4CE
28
19
0
06 Oct 2023
Fragment-based Pretraining and Finetuning on Molecular Graphs
Fragment-based Pretraining and Finetuning on Molecular Graphs
Kha-Dinh Luong
Ambuj Singh
AI4CE
25
12
0
05 Oct 2023
Fast, Expressive SE$(n)$ Equivariant Networks through Weight-Sharing in
  Position-Orientation Space
Fast, Expressive SE(n)(n)(n) Equivariant Networks through Weight-Sharing in Position-Orientation Space
Erik J. Bekkers
Sharvaree P. Vadgama
Rob D. Hesselink
P. A. V. D. Linden
David W. Romero
13
24
0
04 Oct 2023
Probabilistically Rewired Message-Passing Neural Networks
Probabilistically Rewired Message-Passing Neural Networks
Chendi Qian
Andrei Manolache
Kareem Ahmed
Zhe Zeng
Guy Van den Broeck
Mathias Niepert
Christopher Morris
39
12
0
03 Oct 2023
On Training Derivative-Constrained Neural Networks
On Training Derivative-Constrained Neural Networks
KaiChieh Lo
Daniel Huang
26
3
0
02 Oct 2023
Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks
Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks
Yanqiao Zhu
Jeehyun Hwang
Keir Adams
Zhen Liu
B. Nan
...
Olaf Wiest
Olexandr Isayev
Connor W. Coley
Yizhou Sun
Wei Wang
19
6
0
29 Sep 2023
3D-Mol: A Novel Contrastive Learning Framework for Molecular Property
  Prediction with 3D Information
3D-Mol: A Novel Contrastive Learning Framework for Molecular Property Prediction with 3D Information
Taojie Kuang
Yiming Ren
Zhixiang Ren
25
7
0
28 Sep 2023
From Peptides to Nanostructures: A Euclidean Transformer for Fast and
  Stable Machine Learned Force Fields
From Peptides to Nanostructures: A Euclidean Transformer for Fast and Stable Machine Learned Force Fields
J. Frank
Oliver T. Unke
Klaus-Robert Muller
Stefan Chmiela
26
3
0
21 Sep 2023
Uncovering Neural Scaling Laws in Molecular Representation Learning
Uncovering Neural Scaling Laws in Molecular Representation Learning
Dingshuo Chen
Yanqiao Zhu
Jieyu Zhang
Yuanqi Du
Zhixun Li
Qiang Liu
Shu Wu
Liang Wang
32
16
0
15 Sep 2023
Molecular Conformation Generation via Shifting Scores
Molecular Conformation Generation via Shifting Scores
Zihan Zhou
Ruiying Liu
Chaolong Ying
Ruimao Zhang
Tianshu Yu
DiffM
29
2
0
12 Sep 2023
MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials
  Modeling
MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials Modeling
Kin Long Kelvin Lee
Carmelo Gonzales
Marcel Nassar
Matthew Spellings
Mikhail Galkin
Santiago Miret
32
15
0
12 Sep 2023
Distance-Restricted Folklore Weisfeiler-Leman GNNs with Provable Cycle
  Counting Power
Distance-Restricted Folklore Weisfeiler-Leman GNNs with Provable Cycle Counting Power
Junru Zhou
Jiarui Feng
Xiyuan Wang
Muhan Zhang
24
8
0
10 Sep 2023
PolyGET: Accelerating Polymer Simulations by Accurate and Generalizable
  Forcefield with Equivariant Transformer
PolyGET: Accelerating Polymer Simulations by Accurate and Generalizable Forcefield with Equivariant Transformer
Rui Feng
Huan Tran
Aubrey Toland
Binghong Chen
Qi Zhu
R. Ramprasad
Chao Zhang
11
1
0
01 Sep 2023
May the Force be with You: Unified Force-Centric Pre-Training for 3D
  Molecular Conformations
May the Force be with You: Unified Force-Centric Pre-Training for 3D Molecular Conformations
Rui Feng
Qi Zhu
Huan Tran
Binghong Chen
Aubrey Toland
R. Ramprasad
Chao Zhang
AI4CE
28
9
0
24 Aug 2023
Dual-Balancing for Multi-Task Learning
Dual-Balancing for Multi-Task Learning
Baijiong Lin
Weisen Jiang
Feiyang Ye
Yu Zhang
Pengguang Chen
Yingke Chen
Shu Liu
James T. Kwok
CVBM
28
12
0
23 Aug 2023
Expressivity of Graph Neural Networks Through the Lens of Adversarial
  Robustness
Expressivity of Graph Neural Networks Through the Lens of Adversarial Robustness
Francesco Campi
Lukas Gosch
Thomas Wollschläger
Yan Scholten
Stephan Günnemann
AAML
56
2
0
16 Aug 2023
Diffusion probabilistic models enhance variational autoencoder for
  crystal structure generative modeling
Diffusion probabilistic models enhance variational autoencoder for crystal structure generative modeling
T. Pakornchote
Natthaphon Choomphon-anomakhun
Sorrjit Arrerut
C. Atthapak
S. Khamkaeo
Thiparat Chotibut
T. Bovornratanaraks
DiffM
29
17
0
04 Aug 2023
Factor Graph Neural Networks
Factor Graph Neural Networks
Zhen Zhang
Mohammed Haroon Dupty
Fan Wu
Javen Qinfeng Shi
Fan Wu
AI4CE
30
40
0
02 Aug 2023
Improvable Gap Balancing for Multi-Task Learning
Improvable Gap Balancing for Multi-Task Learning
Yanqi Dai
Nanyi Fei
Zhiwu Lu
40
4
0
28 Jul 2023
Learning Universal and Robust 3D Molecular Representations with Graph
  Convolutional Networks
Learning Universal and Robust 3D Molecular Representations with Graph Convolutional Networks
Shuo-feng Zhang
Yang Liu
Li Xie
Lei Xie
3DV
18
0
0
24 Jul 2023
Fractional Denoising for 3D Molecular Pre-training
Fractional Denoising for 3D Molecular Pre-training
Shi Feng
Yuyan Ni
Yanyan Lan
Zhiming Ma
Wei-Ying Ma
DiffM
AI4CE
47
25
0
20 Jul 2023
ChiENN: Embracing Molecular Chirality with Graph Neural Networks
ChiENN: Embracing Molecular Chirality with Graph Neural Networks
Piotr Gaiñski
Michał Koziarski
Jacek Tabor
Marek Śmieja
GNN
34
3
0
05 Jul 2023
Why Deep Models Often cannot Beat Non-deep Counterparts on Molecular
  Property Prediction?
Why Deep Models Often cannot Beat Non-deep Counterparts on Molecular Property Prediction?
Jun-Xiong Xia
Lecheng Zhang
Xiao Zhu
Stan Z. Li
26
3
0
30 Jun 2023
Accelerating Molecular Graph Neural Networks via Knowledge Distillation
Accelerating Molecular Graph Neural Networks via Knowledge Distillation
Filip Ekstrom Kelvinius
D. Georgiev
Artur P. Toshev
Johannes Gasteiger
26
7
0
26 Jun 2023
Previous
123456789
Next