ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03123
  4. Cited By
Directional Message Passing for Molecular Graphs

Directional Message Passing for Molecular Graphs

6 March 2020
Johannes Klicpera
Janek Groß
Stephan Günnemann
ArXivPDFHTML

Papers citing "Directional Message Passing for Molecular Graphs"

50 / 450 papers shown
Title
HMAE: Self-Supervised Few-Shot Learning for Quantum Spin Systems
HMAE: Self-Supervised Few-Shot Learning for Quantum Spin Systems
Ibne Farabi Shihab
Sanjeda Akter
Anuj Sharma
34
0
0
06 May 2025
RISE: Radius of Influence based Subgraph Extraction for 3D Molecular Graph Explanation
RISE: Radius of Influence based Subgraph Extraction for 3D Molecular Graph Explanation
J. Qu
Wenhan Gao
Jiaxing Zhang
Xufeng Liu
Hua Wei
Haibin Ling
Y. Liu
AI4CE
50
0
0
04 May 2025
A 3D pocket-aware and affinity-guided diffusion model for lead optimization
A 3D pocket-aware and affinity-guided diffusion model for lead optimization
Anjie Qiao
Junjie Xie
W. R. Huang
Hao Zhang
Jiahua Rao
Shuangjia Zheng
Yuedong Yang
Z. Wang
Guo-Bo Li
J. Lei
DiffM
MedIm
38
0
0
29 Apr 2025
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Maximilian Stupp
P. S. Koutsourelakis
40
0
0
29 Apr 2025
Uncertainty Quantification in Graph Neural Networks with Shallow Ensembles
Uncertainty Quantification in Graph Neural Networks with Shallow Ensembles
Tirtha Vinchurkar
Kareem Abdelmaqsoud
John R. Kitchin
AI4CE
91
0
0
17 Apr 2025
Optimizing Data Distribution and Kernel Performance for Efficient Training of Chemistry Foundation Models: A Case Study with MACE
Optimizing Data Distribution and Kernel Performance for Efficient Training of Chemistry Foundation Models: A Case Study with MACE
J. Firoz
Franco Pellegrini
Mario Geiger
Darren J. Hsu
Jenna A. Bilbrey
...
Chris Mundy
Gábor Csányi
Justin S. Smith
Ponnuswamy Sadayappan
Sutanay Choudhury
26
0
0
14 Apr 2025
Data Fusion of Deep Learned Molecular Embeddings for Property Prediction
Data Fusion of Deep Learned Molecular Embeddings for Property Prediction
Robert Appleton
Brian C Barnes
Alejandro Strachan
FedML
AI4CE
32
0
0
09 Apr 2025
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Alexander Windmann
Henrik S. Steude
Daniel Boschmann
Oliver Niggemann
OOD
AI4TS
33
0
0
04 Apr 2025
Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Fabian L. Thiemann
Thiago Reschützegger
Massimiliano Esposito
Tseden Taddese
Juan D. Olarte-Plata
Fausto Martelli
AI4CE
47
0
0
31 Mar 2025
Optimal Invariant Bases for Atomistic Machine Learning
Optimal Invariant Bases for Atomistic Machine Learning
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
37
0
0
30 Mar 2025
Multi-Modality Representation Learning for Antibody-Antigen Interactions Prediction
Multi-Modality Representation Learning for Antibody-Antigen Interactions Prediction
Peijin Guo
Minghui Li
Hewen Pan
Ruixiang Huang
Lulu Xue
Shengqing Hu
Zikang Guo
Wei Wan
Shengshan Hu
29
0
0
22 Mar 2025
Beyond Atoms: Enhancing Molecular Pretrained Representations with 3D Space Modeling
Beyond Atoms: Enhancing Molecular Pretrained Representations with 3D Space Modeling
Shuqi Lu
Xiaohong Ji
Bohang Zhang
Lin Yao
Siyuan Liu
Zhifeng Gao
Linfeng Zhang
Guolin Ke
AI4CE
46
1
0
13 Mar 2025
A Generalist Cross-Domain Molecular Learning Framework for Structure-Based Drug Discovery
Yiheng Zhu
Mingyang Li
Junlong Liu
Kun Fu
J. Wu
Q. Li
Mingze Yin
Jieping Ye
Jian Wu
Z. Wang
60
0
0
06 Mar 2025
How simple can you go? An off-the-shelf transformer approach to molecular dynamics
Max Eissler
Tim Korjakow
Stefan Ganscha
Oliver T. Unke
Klaus-Robert Müller
Stefan Gugler
58
1
0
03 Mar 2025
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Zun Wang
Chang-Shu Liu
Jia Zhang
Bin Shao
Mark B. Gerstein
72
0
0
26 Feb 2025
A Materials Foundation Model via Hybrid Invariant-Equivariant Architectures
Keqiang Yan
Montgomery Bohde
Andrii Kryvenko
Ziyu Xiang
Kaiji Zhao
...
Jianwen Xie
Raymundo Arróyave
X. Qian
Xiaofeng Qian
Shuiwang Ji
47
0
0
25 Feb 2025
Geometric Kolmogorov-Arnold Superposition Theorem
Francesco Alesiani
Takashi Maruyama
H. Christiansen
Viktor Zaverkin
53
0
0
23 Feb 2025
MolSpectra: Pre-training 3D Molecular Representation with Multi-modal Energy Spectra
MolSpectra: Pre-training 3D Molecular Representation with Multi-modal Energy Spectra
Liang Wang
Shaozhen Liu
Yu Rong
Deli Zhao
Qiang Liu
Shu Wu
Liang Wang
MedIm
63
2
0
22 Feb 2025
Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks
Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks
Maya Bechler-Speicher
Ben Finkelshtein
Fabrizio Frasca
Luis Muller
Jan Tonshoff
...
Michael M. Bronstein
Mathias Niepert
Bryan Perozzi
Mikhail Galkin
Christopher Morris
OOD
97
2
0
21 Feb 2025
SymmCD: Symmetry-Preserving Crystal Generation with Diffusion Models
SymmCD: Symmetry-Preserving Crystal Generation with Diffusion Models
Daniel Levy
Siba Smarak Panigrahi
Sékou-Oumar Kaba
Qiang Zhu
Kin Long Kelvin Lee
Mikhail Galkin
Santiago Miret
Siamak Ravanbakhsh
189
11
0
05 Feb 2025
Deep Neural Network for Phonon-Assisted Optical Spectra in Semiconductors
Deep Neural Network for Phonon-Assisted Optical Spectra in Semiconductors
Qiangqiang Gu
S. K. Pandey
Zhanghao Zhouyin
59
0
0
02 Feb 2025
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
Yuanchang Zhou
Siyu Hu
Chen Wang
Lin-Wang Wang
Guangming Tan
Weile Jia
AI4CE
GNN
50
0
0
30 Dec 2024
MOL-Mamba: Enhancing Molecular Representation with Structural & Electronic Insights
MOL-Mamba: Enhancing Molecular Representation with Structural & Electronic Insights
Jingjing Hu
D. Guo
Zhan Si
Deguang Liu
Yunfeng Diao
J. Zhang
Jinxing Zhou
Meng Wang
Mamba
98
1
0
21 Dec 2024
LMDM:Latent Molecular Diffusion Model For 3D Molecule Generation
LMDM:Latent Molecular Diffusion Model For 3D Molecule Generation
Xiang Chen
DiffM
74
0
0
05 Dec 2024
OpenQDC: Open Quantum Data Commons
OpenQDC: Open Quantum Data Commons
Cristian Gabellini
Nikhil Shenoy
Stephan Thaler
Semih Cantürk
Daniel McNeela
Dominique Beaini
Michael Bronstein
Prudencio Tossou
AI4CE
75
1
0
29 Nov 2024
Geometric Point Attention Transformer for 3D Shape Reassembly
Geometric Point Attention Transformer for 3D Shape Reassembly
Jiahan Li
Chaoran Cheng
Jianzhu Ma
Ge Liu
3DPC
ViT
74
1
0
26 Nov 2024
Equivariant Graph Network Approximations of High-Degree Polynomials for
  Force Field Prediction
Equivariant Graph Network Approximations of High-Degree Polynomials for Force Field Prediction
Zhao Xu
Haiyang Yu
Montgomery Bohde
Shuiwang Ji
40
0
0
06 Nov 2024
Integrating Graph Neural Networks and Many-Body Expansion Theory for
  Potential Energy Surfaces
Integrating Graph Neural Networks and Many-Body Expansion Theory for Potential Energy Surfaces
Siqi Chen
Zhiqiang Wang
Xianqi Deng
Yili Shen
C. Ju
...
Lin Xiong
Guo Ling
Dieaa Alhmoud
Hui Guan
Zhou Lin
29
0
0
03 Nov 2024
Bridging Geometric States via Geometric Diffusion Bridge
Bridging Geometric States via Geometric Diffusion Bridge
Shengjie Luo
Yixian Xu
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
34
0
0
31 Oct 2024
The Importance of Being Scalable: Improving the Speed and Accuracy of
  Neural Network Interatomic Potentials Across Chemical Domains
The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains
Eric Qu
Aditi S. Krishnapriyan
LRM
26
10
0
31 Oct 2024
Scaling Molecular Dynamics with ab initio Accuracy to 149 Nanoseconds
  per Day
Scaling Molecular Dynamics with ab initio Accuracy to 149 Nanoseconds per Day
Jianxiong Li
Boyang Li
Zhuoqiang Guo
Mingzhen Li
Enji Li
Lijun Liu
Guojun Yuan
Zhan Wang
Guangming Tan
Weile Jia
AI4CE
35
1
0
30 Oct 2024
ET-Flow: Equivariant Flow-Matching for Molecular Conformer Generation
ET-Flow: Equivariant Flow-Matching for Molecular Conformer Generation
Majdi Hassan
Nikhil Shenoy
Jungyoon Lee
Hannes Stärk
Stephan Thaler
Dominique Beaini
27
6
0
29 Oct 2024
Pushing the Limits of All-Atom Geometric Graph Neural Networks:
  Pre-Training, Scaling and Zero-Shot Transfer
Pushing the Limits of All-Atom Geometric Graph Neural Networks: Pre-Training, Scaling and Zero-Shot Transfer
Zihan Pengmei
Zhengyuan Shen
Zichen Wang
Marcus Collins
Huzefa Rangwala
AI4CE
21
2
0
29 Oct 2024
Relaxed Equivariance via Multitask Learning
Relaxed Equivariance via Multitask Learning
Ahmed A. A. Elhag
T. Konstantin Rusch
Francesco Di Giovanni
Michael Bronstein
42
2
0
23 Oct 2024
Graph Neural Networks for Edge Signals: Orientation Equivariance and Invariance
Graph Neural Networks for Edge Signals: Orientation Equivariance and Invariance
Dominik Fuchsgruber
Tim Poštuvan
Stephan Günnemann
Simon Geisler
34
2
0
22 Oct 2024
CrystalX: Ultra-Precision Crystal Structure Resolution and Error
  Correction Using Deep Learning
CrystalX: Ultra-Precision Crystal Structure Resolution and Error Correction Using Deep Learning
Kaipeng Zheng
Weiran Huang
Wanli Ouyang
Han-Sen Zhong
Y. Li
31
0
0
17 Oct 2024
Partially Trained Graph Convolutional Networks Resist Oversmoothing
Partially Trained Graph Convolutional Networks Resist Oversmoothing
Dimitrios Kelesis
Dimitris Fotakis
G. Paliouras
SSL
16
0
0
17 Oct 2024
Geometric Trajectory Diffusion Models
Geometric Trajectory Diffusion Models
Jiaqi Han
Minkai Xu
Aaron Lou
Haotian Ye
Stefano Ermon
DiffM
51
4
0
16 Oct 2024
Are High-Degree Representations Really Unnecessary in Equivariant Graph
  Neural Networks?
Are High-Degree Representations Really Unnecessary in Equivariant Graph Neural Networks?
Jiacheng Cen
Anyi Li
Ning Lin
Yuxiang Ren
Zihe Wang
Wenbing Huang
38
2
0
15 Oct 2024
KA-GNN: Kolmogorov-Arnold Graph Neural Networks for Molecular Property
  Prediction
KA-GNN: Kolmogorov-Arnold Graph Neural Networks for Molecular Property Prediction
Longlong Li
Yipeng Zhang
Guanghui Wang
Kelin Xia
29
3
0
15 Oct 2024
Beyond Sequence: Impact of Geometric Context for RNA Property Prediction
Beyond Sequence: Impact of Geometric Context for RNA Property Prediction
Junjie Xu
Artem Moskalev
Tommaso Mansi
Mangal Prakash
Rui Liao
AI4CE
26
1
0
15 Oct 2024
Towards Stable, Globally Expressive Graph Representations with Laplacian
  Eigenvectors
Towards Stable, Globally Expressive Graph Representations with Laplacian Eigenvectors
Junru Zhou
Cai Zhou
Xiyuan Wang
Pan Li
Muhan Zhang
35
0
0
13 Oct 2024
E3STO: Orbital Inspired SE(3)-Equivariant Molecular Representation for
  Electron Density Prediction
E3STO: Orbital Inspired SE(3)-Equivariant Molecular Representation for Electron Density Prediction
Ilan Mitnikov
Joseph Jacobson
20
0
0
08 Oct 2024
Neural P$^3$M: A Long-Range Interaction Modeling Enhancer for Geometric
  GNNs
Neural P3^33M: A Long-Range Interaction Modeling Enhancer for Geometric GNNs
Yusong Wang
Chaoran Cheng
Shaoning Li
Yuxuan Ren
Bin Shao
Ge Liu
Pheng-Ann Heng
Nanning Zheng
AI4CE
30
3
0
26 Sep 2024
Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks
Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks
Ashwin Samudre
Mircea Petrache
Brian D. Nord
Shubhendu Trivedi
42
2
0
18 Sep 2024
SpinMultiNet: Neural Network Potential Incorporating Spin Degrees of
  Freedom with Multi-Task Learning
SpinMultiNet: Neural Network Potential Incorporating Spin Degrees of Freedom with Multi-Task Learning
Koki Ueno
Satoru Ohuchi
Kazuhide Ichikawa
Kei Amii
Kensuke Wakasugi
46
0
0
05 Sep 2024
Towards Symbolic XAI -- Explanation Through Human Understandable Logical
  Relationships Between Features
Towards Symbolic XAI -- Explanation Through Human Understandable Logical Relationships Between Features
Thomas Schnake
Farnoush Rezaei Jafaria
Jonas Lederer
Ping Xiong
Shinichi Nakajima
Stefan Gugler
G. Montavon
Klaus-Robert Müller
38
3
0
30 Aug 2024
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
Paul Fuchs
Stephan Thaler
Sebastien Röcken
J. Zavadlav
DiffM
68
6
0
28 Aug 2024
Cross-Modal Learning for Chemistry Property Prediction: Large Language
  Models Meet Graph Machine Learning
Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning
Sakhinana Sagar Srinivas
Venkataramana Runkana
AI4CE
33
1
0
27 Aug 2024
Molecular Graph Representation Learning Integrating Large Language
  Models with Domain-specific Small Models
Molecular Graph Representation Learning Integrating Large Language Models with Domain-specific Small Models
Tianyu Zhang
Yuxiang Ren
Chengbin Hou
Hairong Lv
Xuegong Zhang
AI4CE
29
1
0
19 Aug 2024
123456789
Next