ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03123
  4. Cited By
Directional Message Passing for Molecular Graphs

Directional Message Passing for Molecular Graphs

6 March 2020
Johannes Klicpera
Janek Groß
Stephan Günnemann
ArXivPDFHTML

Papers citing "Directional Message Passing for Molecular Graphs"

50 / 450 papers shown
Title
EquiformerV2: Improved Equivariant Transformer for Scaling to
  Higher-Degree Representations
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations
Yidong Liao
Brandon M. Wood
Abhishek Das
Tess E. Smidt
24
131
0
21 Jun 2023
Uncertainty Estimation for Molecules: Desiderata and Methods
Uncertainty Estimation for Molecules: Desiderata and Methods
Tom Wollschlager
Nicholas Gao
Bertrand Charpentier
Mohamed Amine Ketata
Stephan Günnemann
21
9
0
20 Jun 2023
A Systematic Survey in Geometric Deep Learning for Structure-based Drug
  Design
A Systematic Survey in Geometric Deep Learning for Structure-based Drug Design
Zaixin Zhang
Jiaxian Yan
Qi Liu
Enhong Chen
Marinka Zitnik
32
1
0
20 Jun 2023
P-tensors: a General Formalism for Constructing Higher Order Message
  Passing Networks
P-tensors: a General Formalism for Constructing Higher Order Message Passing Networks
Tianyi Sun
Andrew R. Hands
Risi Kondor
13
2
0
19 Jun 2023
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Haiyang Yu
Meng Liu
Youzhi Luo
A. Strasser
X. Qian
Xiaoning Qian
Shuiwang Ji
13
20
0
15 Jun 2023
Symmetry-Informed Geometric Representation for Molecules, Proteins, and
  Crystalline Materials
Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials
Shengchao Liu
Weitao Du
Yanjing Li
Zhuoxinran Li
Zhiling Zheng
...
Anima Anandkumar
C. Borgs
J. Chayes
Hongyu Guo
Jian Tang
AI4CE
31
19
0
15 Jun 2023
Automated 3D Pre-Training for Molecular Property Prediction
Automated 3D Pre-Training for Molecular Property Prediction
Xu Wang
Huan Zhao
Weiwei Tu
Quanming Yao
AI4CE
26
35
0
13 Jun 2023
Efficient Approximations of Complete Interatomic Potentials for Crystal
  Property Prediction
Efficient Approximations of Complete Interatomic Potentials for Crystal Property Prediction
Yu-Ching Lin
Keqiang Yan
Youzhi Luo
Yi Liu
Xiaoning Qian
Shuiwang Ji
66
33
0
12 Jun 2023
TensorNet: Cartesian Tensor Representations for Efficient Learning of
  Molecular Potentials
TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials
Guillem Simeon
Gianni de Fabritiis
24
45
0
10 Jun 2023
Scaling Spherical CNNs
Scaling Spherical CNNs
Carlos Esteves
Jean-Jacques E. Slotine
A. Makadia
GNN
LRM
19
13
0
08 Jun 2023
A Crystal-Specific Pre-Training Framework for Crystal Material Property
  Prediction
A Crystal-Specific Pre-Training Framework for Crystal Material Property Prediction
Haomin Yu
Yanru Song
Jilin Hu
Chenjuan Guo
B. Yang
AI4CE
19
4
0
08 Jun 2023
Efficient and Equivariant Graph Networks for Predicting Quantum
  Hamiltonian
Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian
Haiyang Yu
Zhao Xu
X. Qian
Xiaoning Qian
Shuiwang Ji
37
24
0
08 Jun 2023
Multi-task Bioassay Pre-training for Protein-ligand Binding Affinity
  Prediction
Multi-task Bioassay Pre-training for Protein-ligand Binding Affinity Prediction
Jiaxian Yan
Zhaofeng Ye
Ziyi Yang
Chengqiang Lu
Shengyu Zhang
Qi Liu
J. Qiu
35
11
0
08 Jun 2023
XInsight: Revealing Model Insights for GNNs with Flow-based Explanations
XInsight: Revealing Model Insights for GNNs with Flow-based Explanations
Eli J. Laird
Ayesh Madushanka
E. Kraka
Corey Clark
17
1
0
07 Jun 2023
Optimized Crystallographic Graph Generation for Material Science
Optimized Crystallographic Graph Generation for Material Science
Astrid Klipfel
Y. Frégier
A. Sayede
Zied Bouraoui
12
1
0
07 Jun 2023
Unified Model for Crystalline Material Generation
Unified Model for Crystalline Material Generation
Astrid Klipfel
Y. Frégier
A. Sayede
Zied Bouraoui
11
6
0
07 Jun 2023
Transfer learning for atomistic simulations using GNNs and kernel mean
  embeddings
Transfer learning for atomistic simulations using GNNs and kernel mean embeddings
Johannes Falk
L. Bonati
P. Novelli
Michele Parinello
Massimiliano Pontil
27
4
0
02 Jun 2023
Generalist Equivariant Transformer Towards 3D Molecular Interaction
  Learning
Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning
Xiangzhe Kong
Wen-bing Huang
Yang Liu
20
13
0
02 Jun 2023
DiffPack: A Torsional Diffusion Model for Autoregressive Protein
  Side-Chain Packing
DiffPack: A Torsional Diffusion Model for Autoregressive Protein Side-Chain Packing
Yang Zhang
Zuobai Zhang
Bozitao Zhong
Sanchit Misra
Jian Tang
DiffM
16
32
0
01 Jun 2023
Smooth, exact rotational symmetrization for deep learning on point
  clouds
Smooth, exact rotational symmetrization for deep learning on point clouds
Sergey Pozdnyakov
Michele Ceriotti
3DPC
35
25
0
30 May 2023
SO(2)-Equivariant Downwash Models for Close Proximity Flight
SO(2)-Equivariant Downwash Models for Close Proximity Flight
Henry Smith
Ajay Shankar
Jennifer Gielis
J. Blumenkamp
A. Prorok
27
7
0
30 May 2023
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Mircea Petrache
Shubhendu Trivedi
33
22
0
27 May 2023
A Score-Based Model for Learning Neural Wavefunctions
A Score-Based Model for Learning Neural Wavefunctions
Xuan Zhang
Shenglong Xu
Shuiwang Ji
DiffM
23
1
0
25 May 2023
Learning Lagrangian Fluid Mechanics with E($3$)-Equivariant Graph Neural
  Networks
Learning Lagrangian Fluid Mechanics with E(333)-Equivariant Graph Neural Networks
Artur P. Toshev
Gianluca Galletti
Johannes Brandstetter
Stefan Adami
Nikolaus A. Adams
AI4CE
27
5
0
24 May 2023
Continual Learning on Dynamic Graphs via Parameter Isolation
Continual Learning on Dynamic Graphs via Parameter Isolation
Peiyan Zhang
Yuchen Yan
Chaozhuo Li
Senzhang Wang
Xing Xie
Guojie Song
Sunghun Kim
58
35
0
23 May 2023
Atomic and Subgraph-aware Bilateral Aggregation for Molecular
  Representation Learning
Atomic and Subgraph-aware Bilateral Aggregation for Molecular Representation Learning
Jiahao Chen
Yurou Liu
Jiangmeng Li
Bing-Huang Su
Jirong Wen
21
0
0
22 May 2023
Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation
Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation
Han Huang
Leilei Sun
Bowen Du
Weifeng Lv
DiffM
24
16
0
21 May 2023
PANNA 2.0: Efficient neural network interatomic potentials and new
  architectures
PANNA 2.0: Efficient neural network interatomic potentials and new architectures
Franco Pellegrini
Ruggero Lot
Yusuf Shaidu
E. Küçükbenli
15
9
0
19 May 2023
Clifford Group Equivariant Neural Networks
Clifford Group Equivariant Neural Networks
David Ruhe
Johannes Brandstetter
Patrick Forré
26
34
0
18 May 2023
CREMP: Conformer-Rotamer Ensembles of Macrocyclic Peptides for Machine
  Learning
CREMP: Conformer-Rotamer Ensembles of Macrocyclic Peptides for Machine Learning
Colin A. Grambow
Hayley Weir
Christian N Cunningham
Tommaso Biancalani
Kangway V Chuang
18
4
0
14 May 2023
E(n) Equivariant Message Passing Simplicial Networks
E(n) Equivariant Message Passing Simplicial Networks
Floor Eijkelboom
Rob D. Hesselink
Erik J. Bekkers
20
14
0
11 May 2023
Message Passing Neural Networks for Traffic Forecasting
Message Passing Neural Networks for Traffic Forecasting
Arian Prabowo
Hao Xue
Wei Shao
Piotr Koniusz
Flora D. Salim
GNN
23
6
0
09 May 2023
From Relational Pooling to Subgraph GNNs: A Universal Framework for More
  Expressive Graph Neural Networks
From Relational Pooling to Subgraph GNNs: A Universal Framework for More Expressive Graph Neural Networks
Cai Zhou
Xiyuan Wang
Muhan Zhang
26
14
0
08 May 2023
An Exploration of Conditioning Methods in Graph Neural Networks
An Exploration of Conditioning Methods in Graph Neural Networks
Yeskendir Koishekenov
Erik J. Bekkers
AI4CE
35
3
0
03 May 2023
Single-model uncertainty quantification in neural network potentials
  does not consistently outperform model ensembles
Single-model uncertainty quantification in neural network potentials does not consistently outperform model ensembles
Aik Rui Tan
S. Urata
Samuel Goldman
Johannes C. B. Dietschreit
Rafael Gómez-Bombarelli
BDL
36
41
0
02 May 2023
Stress and heat flux via automatic differentiation
Stress and heat flux via automatic differentiation
Marcel F. Langer
J. Frank
Florian Knoop
22
9
0
02 May 2023
3D Molecular Geometry Analysis with 2D Graphs
3D Molecular Geometry Analysis with 2D Graphs
Zhao Xu
Yaochen Xie
Youzhi Luo
Xuan Zhang
Xinyi Xu
Meng Liu
Kaleb Dickerson
Cheng Deng
Maho Nakata
Shuiwang Ji
19
1
0
01 May 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
29
53
0
28 Apr 2023
SELFormer: Molecular Representation Learning via SELFIES Language Models
SELFormer: Molecular Representation Learning via SELFIES Language Models
Atakan Yüksel
Erva Ulusoy
Atabey Ünlü
Tunca Dogan
25
54
0
10 Apr 2023
A new perspective on building efficient and expressive 3D equivariant
  graph neural networks
A new perspective on building efficient and expressive 3D equivariant graph neural networks
Weitao Du
Yuanqi Du
Limei Wang
Dieqiao Feng
Guifeng Wang
Shuiwang Ji
Carla P. Gomes
Zhixin Ma
AI4CE
27
33
0
07 Apr 2023
Equivariant Parameter Sharing for Porous Crystalline Materials
Equivariant Parameter Sharing for Porous Crystalline Materials
Marko Petković
Pablo Romero-Marimon
Vlado Menkovski
Sofía Calero
26
1
0
04 Apr 2023
GeoTMI:Predicting quantum chemical property with easy-to-obtain geometry
  via positional denoising
GeoTMI:Predicting quantum chemical property with easy-to-obtain geometry via positional denoising
Hyeonsu Kim
Jeheon Woo
Seonghwan Kim
Seokhyun Moon
Jun Hyeong Kim
Woo Youn Kim
AI4CE
28
6
0
28 Mar 2023
Learning Harmonic Molecular Representations on Riemannian Manifold
Learning Harmonic Molecular Representations on Riemannian Manifold
Yiqun Wang
Yuning Shen
Shih‐Ya Chen
Lihao Wang
Fei Ye
Hao Zhou
35
12
0
27 Mar 2023
Geometric Deep Learning for Molecular Crystal Structure Prediction
Geometric Deep Learning for Molecular Crystal Structure Prediction
Michael Kilgour
J. Rogal
M. Tuckerman
13
16
0
17 Mar 2023
Highly Accurate Quantum Chemical Property Prediction with Uni-Mol+
Highly Accurate Quantum Chemical Property Prediction with Uni-Mol+
Shuqi Lu
Zhifeng Gao
Di He
Linfeng Zhang
Guolin Ke
32
24
0
16 Mar 2023
DR-Label: Improving GNN Models for Catalysis Systems by Label
  Deconstruction and Reconstruction
DR-Label: Improving GNN Models for Catalysis Systems by Label Deconstruction and Reconstruction
Bo-Lan Wang
Chen Liang
Jiaze Wang
Furui Liu
Shaogang Hao
Dong Li
Jianye Hao
Guangyong Chen
Xiaolong Zou
Pheng-Ann Heng
39
3
0
06 Mar 2023
Denoise Pretraining on Nonequilibrium Molecules for Accurate and
  Transferable Neural Potentials
Denoise Pretraining on Nonequilibrium Molecules for Accurate and Transferable Neural Potentials
Yuyang Wang
Chang Xu
Zijie Li
A. Farimani
AAML
AI4CE
19
20
0
03 Mar 2023
CHGNet: Pretrained universal neural network potential for
  charge-informed atomistic modeling
CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling
B. Deng
Peichen Zhong
KyuJung Jun
Janosh Riebesell
K. Han
Christopher J. Bartel
Gerbrand Ceder
20
24
0
28 Feb 2023
Connectivity Optimized Nested Graph Networks for Crystal Structures
Connectivity Optimized Nested Graph Networks for Crystal Structures
R. Ruff
Patrick Reiser
Jan Stuhmer
Pascal Friederich
GNN
26
10
0
27 Feb 2023
Learning Topology-Specific Experts for Molecular Property Prediction
Learning Topology-Specific Experts for Molecular Property Prediction
S. Kim
Dongha Lee
SeongKu Kang
Seonghyeon Lee
Hwanjo Yu
AAML
22
11
0
27 Feb 2023
Previous
123456789
Next