ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02530
  4. Cited By
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
    UQCV
ArXivPDFHTML

Papers citing "Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"

50 / 1,042 papers shown
Title
Uncertainty quantification in neural network classifiers -- a local
  linear approach
Uncertainty quantification in neural network classifiers -- a local linear approach
Magnus Malmström
Isaac Skog
Daniel Axehill
Fredrik K. Gustafsson
UQCV
28
1
0
10 Mar 2023
Training, Architecture, and Prior for Deterministic Uncertainty Methods
Training, Architecture, and Prior for Deterministic Uncertainty Methods
Bertrand Charpentier
Chenxiang Zhang
Stephan Günnemann
UQCV
OOD
AI4CE
39
6
0
10 Mar 2023
Adaptive Calibrator Ensemble for Model Calibration under Distribution
  Shift
Adaptive Calibrator Ensemble for Model Calibration under Distribution Shift
Yu-Hui Zou
Weijian Deng
Liang Zheng
OODD
25
2
0
09 Mar 2023
Scalable Stochastic Gradient Riemannian Langevin Dynamics in
  Non-Diagonal Metrics
Scalable Stochastic Gradient Riemannian Langevin Dynamics in Non-Diagonal Metrics
Hanlin Yu
M. Hartmann
Bernardo Williams
Arto Klami
BDL
22
5
0
09 Mar 2023
To Stay or Not to Stay in the Pre-train Basin: Insights on Ensembling in
  Transfer Learning
To Stay or Not to Stay in the Pre-train Basin: Insights on Ensembling in Transfer Learning
Ildus Sadrtdinov
Dmitrii Pozdeev
Dmitry Vetrov
E. Lobacheva
35
4
0
06 Mar 2023
Rethinking Confidence Calibration for Failure Prediction
Rethinking Confidence Calibration for Failure Prediction
Fei Zhu
Zhen Cheng
Xu-Yao Zhang
Cheng-Lin Liu
UQCV
22
39
0
06 Mar 2023
Multi-Symmetry Ensembles: Improving Diversity and Generalization via
  Opposing Symmetries
Multi-Symmetry Ensembles: Improving Diversity and Generalization via Opposing Symmetries
Charlotte Loh
Seung-Jun Han
Shivchander Sudalairaj
Rumen Dangovski
Kai Xu
F. Wenzel
Marin Soljacic
Akash Srivastava
UQCV
39
1
0
04 Mar 2023
ESD: Expected Squared Difference as a Tuning-Free Trainable Calibration
  Measure
ESD: Expected Squared Difference as a Tuning-Free Trainable Calibration Measure
Hee Suk Yoon
Joshua Tian Jin Tee
Eunseop Yoon
Sunjae Yoon
G. Kim
Yingzhen Li
Changdong Yoo
UQCV
MQ
20
8
0
04 Mar 2023
Uncertainty Estimation by Fisher Information-based Evidential Deep
  Learning
Uncertainty Estimation by Fisher Information-based Evidential Deep Learning
Danruo Deng
Guangyong Chen
Yang Yu
Fu-Lun Liu
Pheng-Ann Heng
EDL
UQCV
FedML
35
41
0
03 Mar 2023
Safe AI for health and beyond -- Monitoring to transform a health
  service
Safe AI for health and beyond -- Monitoring to transform a health service
Mahed Abroshan
Michael C. Burkhart
Oscar Giles
Sam F. Greenbury
Zoe Kourtzi
Jack Roberts
M. Schaar
Jannetta S. Steyn
Alan Wilson
M. Yong
22
1
0
02 Mar 2023
Multi-Head Multi-Loss Model Calibration
Multi-Head Multi-Loss Model Calibration
Adrian Galdran
Johan Verjans
G. Carneiro
M. A. G. Ballester
UQCV
18
7
0
02 Mar 2023
A Survey on Uncertainty Quantification Methods for Deep Learning
A Survey on Uncertainty Quantification Methods for Deep Learning
Wenchong He
Zhe Jiang
Tingsong Xiao
Zelin Xu
Yukun Li
BDL
UQCV
AI4CE
19
19
0
26 Feb 2023
Deep active learning for nonlinear system identification
Deep active learning for nonlinear system identification
E. Lundby
Adil Rasheed
I. Halvorsen
D. Reinhardt
S. Gros
J. Gravdahl
25
2
0
24 Feb 2023
Variational Linearized Laplace Approximation for Bayesian Deep Learning
Variational Linearized Laplace Approximation for Bayesian Deep Learning
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDL
UQCV
47
4
0
24 Feb 2023
Distributionally Robust Recourse Action
Distributionally Robust Recourse Action
D. Nguyen
Ngoc H. Bui
Viet Anh Nguyen
42
6
0
22 Feb 2023
What Are Effective Labels for Augmented Data? Improving Calibration and
  Robustness with AutoLabel
What Are Effective Labels for Augmented Data? Improving Calibration and Robustness with AutoLabel
Yao Qin
Xuezhi Wang
Balaji Lakshminarayanan
Ed H. Chi
Alex Beutel
UQCV
22
4
0
22 Feb 2023
Likelihood Annealing: Fast Calibrated Uncertainty for Regression
Likelihood Annealing: Fast Calibrated Uncertainty for Regression
Uddeshya Upadhyay
Jae Myung Kim
Cordelia Schmidt
Bernhard Schölkopf
Zeynep Akata
BDL
UQCV
28
1
0
21 Feb 2023
Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation
  in Natural Language Generation
Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation in Natural Language Generation
Lorenz Kuhn
Y. Gal
Sebastian Farquhar
UQLM
48
261
0
19 Feb 2023
Competent but Rigid: Identifying the Gap in Empowering AI to Participate
  Equally in Group Decision-Making
Competent but Rigid: Identifying the Gap in Empowering AI to Participate Equally in Group Decision-Making
Chengbo Zheng
Yuheng Wu
Chuhan Shi
Shuai Ma
Jiehui Luo
Xiaojuan Ma
27
26
0
17 Feb 2023
Bag of Tricks for In-Distribution Calibration of Pretrained Transformers
Bag of Tricks for In-Distribution Calibration of Pretrained Transformers
Jaeyoung Kim
Dongbin Na
Sungchul Choi
Sungbin Lim
VLM
38
5
0
13 Feb 2023
Probabilistic Circuits That Know What They Don't Know
Probabilistic Circuits That Know What They Don't Know
Fabrizio G. Ventola
Steven Braun
Zhongjie Yu
Martin Mundt
Kristian Kersting
UQCV
TPM
32
7
0
13 Feb 2023
Density-Softmax: Efficient Test-time Model for Uncertainty Estimation
  and Robustness under Distribution Shifts
Density-Softmax: Efficient Test-time Model for Uncertainty Estimation and Robustness under Distribution Shifts
H. Bui
Anqi Liu
OOD
UQCV
23
6
0
13 Feb 2023
Calibrating a Deep Neural Network with Its Predecessors
Calibrating a Deep Neural Network with Its Predecessors
Linwei Tao
Minjing Dong
Daochang Liu
Changming Sun
Chang Xu
BDL
UQCV
16
5
0
13 Feb 2023
Pushing the Accuracy-Group Robustness Frontier with Introspective
  Self-play
Pushing the Accuracy-Group Robustness Frontier with Introspective Self-play
J. Liu
Krishnamurthy Dvijotham
Jihyeon Janel Lee
Quan Yuan
Martin Strobel
Balaji Lakshminarayanan
Deepak Ramachandran
23
5
0
11 Feb 2023
Verifying Generalization in Deep Learning
Verifying Generalization in Deep Learning
Guy Amir
Osher Maayan
Tom Zelazny
Guy Katz
Michael Schapira
AAML
AI4CE
26
14
0
11 Feb 2023
Beyond In-Domain Scenarios: Robust Density-Aware Calibration
Beyond In-Domain Scenarios: Robust Density-Aware Calibration
Christian Tomani
Futa Waseda
Yuesong Shen
Daniel Cremers
UQCV
37
4
0
10 Feb 2023
Confidence-based Reliable Learning under Dual Noises
Confidence-based Reliable Learning under Dual Noises
Peng Cui
Yang Yue
Zhijie Deng
Jun Zhu
NoLa
33
8
0
10 Feb 2023
A Benchmark on Uncertainty Quantification for Deep Learning Prognostics
A Benchmark on Uncertainty Quantification for Deep Learning Prognostics
Luis Basora
Arthur Viens
M. A. Chao
X. Olive
UQCV
BDL
OOD
29
8
0
09 Feb 2023
Probabilistic Attention based on Gaussian Processes for Deep Multiple
  Instance Learning
Probabilistic Attention based on Gaussian Processes for Deep Multiple Instance Learning
Arne Schmidt
Pablo Morales-Álvarez
Rafael Molina
29
13
0
08 Feb 2023
How Reliable is Your Regression Model's Uncertainty Under Real-World
  Distribution Shifts?
How Reliable is Your Regression Model's Uncertainty Under Real-World Distribution Shifts?
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OOD
UQCV
44
12
0
07 Feb 2023
Variational Inference on the Final-Layer Output of Neural Networks
Variational Inference on the Final-Layer Output of Neural Networks
Yadi Wei
Roni Khardon
BDL
UQCV
32
0
0
05 Feb 2023
A Minimax Approach Against Multi-Armed Adversarial Attacks Detection
A Minimax Approach Against Multi-Armed Adversarial Attacks Detection
Federica Granese
Marco Romanelli
S. Garg
Pablo Piantanida
AAML
27
0
0
04 Feb 2023
The Science of Detecting LLM-Generated Texts
The Science of Detecting LLM-Generated Texts
Ruixiang Tang
Yu-Neng Chuang
Xia Hu
DeLMO
42
169
0
04 Feb 2023
Generalized Uncertainty of Deep Neural Networks: Taxonomy and
  Applications
Generalized Uncertainty of Deep Neural Networks: Taxonomy and Applications
Chengyu Dong
OOD
UQCV
BDL
AI4CE
39
0
0
02 Feb 2023
Benchmarking Probabilistic Deep Learning Methods for License Plate
  Recognition
Benchmarking Probabilistic Deep Learning Methods for License Plate Recognition
Franziska Schirrmacher
Benedikt Lorch
Anatol Maier
Christian Riess
UQCV
30
4
0
02 Feb 2023
Confidence and Dispersity Speak: Characterising Prediction Matrix for
  Unsupervised Accuracy Estimation
Confidence and Dispersity Speak: Characterising Prediction Matrix for Unsupervised Accuracy Estimation
Weijian Deng
Yumin Suh
Stephen Gould
Liang Zheng
UQCV
29
12
0
02 Feb 2023
Model Monitoring and Robustness of In-Use Machine Learning Models:
  Quantifying Data Distribution Shifts Using Population Stability Index
Model Monitoring and Robustness of In-Use Machine Learning Models: Quantifying Data Distribution Shifts Using Population Stability Index
A. Khademi
M. Hopka
Devesh Upadhyay
OOD
33
3
0
01 Feb 2023
Pathologies of Predictive Diversity in Deep Ensembles
Pathologies of Predictive Diversity in Deep Ensembles
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
John P. Cunningham
UQCV
43
13
0
01 Feb 2023
ForkMerge: Mitigating Negative Transfer in Auxiliary-Task Learning
ForkMerge: Mitigating Negative Transfer in Auxiliary-Task Learning
Junguang Jiang
Baixu Chen
Junwei Pan
Ximei Wang
Liu Dapeng
Jie Jiang
Mingsheng Long
MoMe
34
20
0
30 Jan 2023
Conformal inference is (almost) free for neural networks trained with
  early stopping
Conformal inference is (almost) free for neural networks trained with early stopping
Zi-Chen Liang
Yan Zhou
Matteo Sesia
BDL
20
11
0
27 Jan 2023
On the role of Model Uncertainties in Bayesian Optimization
On the role of Model Uncertainties in Bayesian Optimization
Jonathan Foldager
Mikkel Jordahn
Lars Kai Hansen
Michael Riis Andersen
23
5
0
14 Jan 2023
How Does Traffic Environment Quantitatively Affect the Autonomous
  Driving Prediction?
How Does Traffic Environment Quantitatively Affect the Autonomous Driving Prediction?
Wenbo Shao
Yan Xu
Jun Yu Li
Chen Lv
Weida Wang
Hong Wang
34
9
0
11 Jan 2023
Benchmarking common uncertainty estimation methods with
  histopathological images under domain shift and label noise
Benchmarking common uncertainty estimation methods with histopathological images under domain shift and label noise
H. A. Mehrtens
Alexander Kurz
Tabea-Clara Bucher
T. Brinker
OOD
UQCV
205
11
0
03 Jan 2023
Towards Reliable Medical Image Segmentation by utilizing Evidential
  Calibrated Uncertainty
Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty
K. Zou
Yidi Chen
Ling Huang
Xuedong Yuan
Xiaojing Shen
Meng Wang
Rick Siow Mong Goh
Yong-Jin Liu
Huazhu Fu
UQCV
28
4
0
01 Jan 2023
Detection of out-of-distribution samples using binary neuron activation
  patterns
Detection of out-of-distribution samples using binary neuron activation patterns
Bartlomiej Olber
Krystian Radlak
A. Popowicz
Michal Szczepankiewicz
K. Chachula
OODD
19
16
0
29 Dec 2022
A System-Level View on Out-of-Distribution Data in Robotics
A System-Level View on Out-of-Distribution Data in Robotics
Rohan Sinha
Apoorva Sharma
Somrita Banerjee
T. Lew
Rachel Luo
Spencer M. Richards
Yixiao Sun
Edward Schmerling
Marco Pavone
UQCV
47
23
0
28 Dec 2022
Annealing Double-Head: An Architecture for Online Calibration of Deep
  Neural Networks
Annealing Double-Head: An Architecture for Online Calibration of Deep Neural Networks
Erdong Guo
D. Draper
Maria de Iorio
39
0
0
27 Dec 2022
On Calibrating Semantic Segmentation Models: Analyses and An Algorithm
On Calibrating Semantic Segmentation Models: Analyses and An Algorithm
Dongdong Wang
Boqing Gong
Liqiang Wang
21
24
0
22 Dec 2022
ECG-Based Electrolyte Prediction: Evaluating Regression and
  Probabilistic Methods
ECG-Based Electrolyte Prediction: Evaluating Regression and Probabilistic Methods
Philipp Bachmann
Daniel Gedon
Fredrik K. Gustafsson
Antônio H. Ribeiro
E. Lampa
S. Gustafsson
Johan Sundström
Thomas B. Schon
31
1
0
21 Dec 2022
TMS-Net: A Segmentation Network Coupled With A Run-time Quality Control
  Method For Robust Cardiac Image Segmentation
TMS-Net: A Segmentation Network Coupled With A Run-time Quality Control Method For Robust Cardiac Image Segmentation
F. Uslu
Anil A. Bharath
39
14
0
21 Dec 2022
Previous
123...8910...192021
Next