Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02530
Cited By
v1
v2 (latest)
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"
50 / 1,062 papers shown
Title
PAC-Bayes Generalization Certificates for Learned Inductive Conformal Prediction
Apoorva Sharma
Sushant Veer
Asher Hancock
Heng Yang
Marco Pavone
Anirudha Majumdar
207
9
0
07 Dec 2023
Data-Centric Digital Agriculture: A Perspective
R. Roscher
Lukas Roth
C. Stachniss
Achim Walter
55
2
0
06 Dec 2023
Bootstrap Your Own Variance
Polina Turishcheva
Jason Ramapuram
Sinead Williamson
Dan Busbridge
Eeshan Gunesh Dhekane
Russ Webb
UQCV
64
0
0
06 Dec 2023
Calibrated Adaptive Teacher for Domain Adaptive Intelligent Fault Diagnosis
Florent Forest
Olga Fink
80
1
0
05 Dec 2023
PaSCo: Urban 3D Panoptic Scene Completion with Uncertainty Awareness
Anh-Quan Cao
Angela Dai
Raoul de Charette
UQCV
71
22
0
04 Dec 2023
RankFeat&RankWeight: Rank-1 Feature/Weight Removal for Out-of-distribution Detection
Yue Song
N. Sebe
Wei Wang
OODD
81
2
0
23 Nov 2023
LM-Cocktail: Resilient Tuning of Language Models via Model Merging
Shitao Xiao
Zheng Liu
Peitian Zhang
Xingrun Xing
MoMe
KELM
156
28
0
22 Nov 2023
An Empirical Study of Uncertainty Estimation Techniques for Detecting Drift in Data Streams
Anton Winter
Nicolas Jourdan
Tristan Wirth
Volker Knauthe
Arjan Kuijper
38
1
0
22 Nov 2023
A Baseline Analysis of Reward Models' Ability To Accurately Analyze Foundation Models Under Distribution Shift
Will LeVine
Benjamin Pikus
Tony Chen
Sean Hendryx
178
10
0
21 Nov 2023
On the Out-of-Distribution Coverage of Combining Split Conformal Prediction and Bayesian Deep Learning
Paul Scemama
Ariel Kapusta
80
0
0
21 Nov 2023
Learning Causal Representations from General Environments: Identifiability and Intrinsic Ambiguity
Jikai Jin
Vasilis Syrgkanis
CML
97
6
0
21 Nov 2023
Evidential Uncertainty Quantification: A Variance-Based Perspective
Ruxiao Duan
B. Caffo
Harrison X. Bai
Haris I. Sair
Craig K. Jones
UD
EDL
UQCV
BDL
PER
95
14
0
19 Nov 2023
Informative Priors Improve the Reliability of Multimodal Clinical Data Classification
L. J. L. Lopez
Tim G. J. Rudner
Karan Singhal
71
3
0
17 Nov 2023
Neural machine translation for automated feedback on children's early-stage writing
Jonas Vestergaard Jensen
Mikkel Jordahn
Michael Riis Andersen
79
0
0
15 Nov 2023
Llamas Know What GPTs Don't Show: Surrogate Models for Confidence Estimation
Vaishnavi Shrivastava
Percy Liang
Ananya Kumar
82
32
0
15 Nov 2023
Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling
Bairu Hou
Yujian Liu
Kaizhi Qian
Jacob Andreas
Shiyu Chang
Yang Zhang
UD
UQCV
PER
98
65
0
15 Nov 2023
Uncertainty Quantification in Machine Learning for Biosignal Applications -- A Review
Ivo Pascal de Jong
A. Sburlea
Matias Valdenegro-Toro
85
2
0
15 Nov 2023
Introducing an Improved Information-Theoretic Measure of Predictive Uncertainty
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
Sepp Hochreiter
85
12
0
14 Nov 2023
Domain Adaptive Object Detection via Balancing Between Self-Training and Adversarial Learning
Muhammad Akhtar Munir
M. H. Khan
M. Sarfraz
Mohsen Ali
ObjD
99
8
0
08 Nov 2023
Preventing Arbitrarily High Confidence on Far-Away Data in Point-Estimated Discriminative Neural Networks
Ahmad Rashid
Serena Hacker
Guojun Zhang
Agustinus Kristiadi
Pascal Poupart
OODD
87
0
0
07 Nov 2023
Cal-DETR: Calibrated Detection Transformer
Muhammad Akhtar Munir
Salman Khan
Muhammad Haris Khan
Mohsen Ali
Fahad Shahbaz Khan
90
9
0
06 Nov 2023
MaxEnt Loss: Constrained Maximum Entropy for Calibration under Out-of-Distribution Shift
Dexter Neo
Stefan Winkler
Tsuhan Chen
OODD
63
3
0
26 Oct 2023
From Pointwise to Powerhouse: Initialising Neural Networks with Generative Models
Christian Harder
Moritz Fuchs
Yuri Tolkach
Anirban Mukhopadhyay
67
0
0
25 Oct 2023
IW-GAE: Importance Weighted Group Accuracy Estimation for Improved Calibration and Model Selection in Unsupervised Domain Adaptation
Taejong Joo
Diego Klabjan
119
1
0
16 Oct 2023
Revisiting Logistic-softmax Likelihood in Bayesian Meta-Learning for Few-Shot Classification
Tianjun Ke
Haoqun Cao
Zenan Ling
Feng Zhou
UQCV
64
8
0
16 Oct 2023
Risk-Aware and Explainable Framework for Ensuring Guaranteed Coverage in Evolving Hardware Trojan Detection
Rahul Vishwakarma
Amin Rezaei
100
6
0
14 Oct 2023
A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors
Olivier Laurent
Emanuel Aldea
Gianni Franchi
BDL
UQCV
79
8
0
12 Oct 2023
A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods
Ling Huang
S. Ruan
Yucheng Xing
Mengling Feng
99
27
0
09 Oct 2023
Prompt-augmented Temporal Point Process for Streaming Event Sequence
Siqiao Xue
Yan Wang
Zhixuan Chu
Xiaoming Shi
Caigao Jiang
Hongyan Hao
Gangwei Jiang
Xiaoyun Feng
James Y. Zhang
Junqing Zhou
AI4TS
67
25
0
08 Oct 2023
IPMix: Label-Preserving Data Augmentation Method for Training Robust Classifiers
Zhenglin Huang
Xianan Bao
Na Zhang
Qingqi Zhang
Xiaomei Tu
Biao Wu
Xi Yang
123
9
0
07 Oct 2023
Distribution-free risk assessment of regression-based machine learning algorithms
Sukrita Singh
Neeraj Sarna
Yuanyuan Li
Yang Li
Agni Orfanoudaki
Michael Berger
OOD
45
3
0
05 Oct 2023
Mitigating the Influence of Domain Shift in Skin Lesion Classification: A Benchmark Study of Unsupervised Domain Adaptation Methods on Dermoscopic Images
Sireesha Chamarthi
Katharina Fogelberg
Roman C. Maron
T. Brinker
Julia Niebling
OOD
65
0
0
05 Oct 2023
Uncertainty quantification for deep learning-based schemes for solving high-dimensional backward stochastic differential equations
Lorenc Kapllani
Long Teng
Matthias Rottmann
31
1
0
05 Oct 2023
Assessment of Prediction Intervals Using Uncertainty Characteristics Curves
Jirí Navrátil
Benjamin Elder
Matthew Arnold
Soumya Ghosh
P. Sattigeri
42
0
0
04 Oct 2023
Out-of-Distribution Detection by Leveraging Between-Layer Transformation Smoothness
Fran Jelenić
Josip Jukić
Martin Tutek
Mate Puljiz
Jan vSnajder
OODD
86
7
0
04 Oct 2023
Reward Model Ensembles Help Mitigate Overoptimization
Thomas Coste
Usman Anwar
Robert Kirk
David M. Krueger
NoLa
ALM
111
139
0
04 Oct 2023
Unified Uncertainty Calibration
Kamalika Chaudhuri
David Lopez-Paz
67
0
0
02 Oct 2023
Deep Neural Networks Tend To Extrapolate Predictably
Katie Kang
Amrith Rajagopal Setlur
Claire Tomlin
Sergey Levine
57
0
0
02 Oct 2023
Skip-Plan: Procedure Planning in Instructional Videos via Condensed Action Space Learning
Zhiheng Li
Wenjia Geng
Muheng Li
Lei Chen
Yansong Tang
Jiwen Lu
Jie Zhou
74
10
0
01 Oct 2023
LoRA ensembles for large language model fine-tuning
Xi Wang
Laurence Aitchison
Maja Rudolph
UQCV
111
39
0
29 Sep 2023
Spurious Feature Diversification Improves Out-of-distribution Generalization
Yong Lin
Lu Tan
Yifan Hao
Honam Wong
Hanze Dong
Weizhong Zhang
Yujiu Yang
Tong Zhang
OODD
97
27
0
29 Sep 2023
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
103
20
0
28 Sep 2023
Large Language Model Routing with Benchmark Datasets
Tal Shnitzer
Anthony Ou
Mírian Silva
Kate Soule
Yuekai Sun
Justin Solomon
Neil Thompson
Mikhail Yurochkin
RALM
74
71
0
27 Sep 2023
Rapid Network Adaptation: Learning to Adapt Neural Networks Using Test-Time Feedback
Teresa Yeo
Oğuzhan Fatih Kar
Zahra Sodagar
Amir Zamir
TTA
OOD
74
4
0
27 Sep 2023
On Calibration of Modern Quantized Efficient Neural Networks
Joe-Hwa Kuang
Alexander Wong
UQCV
MQ
137
1
0
25 Sep 2023
Adapt then Unlearn: Exploring Parameter Space Semantics for Unlearning in Generative Adversarial Networks
Piyush Tiwary
Atri Guha
Subhodip Panda
Prathosh A.P.
MU
GAN
139
9
0
25 Sep 2023
Distribution-Aware Continual Test-Time Adaptation for Semantic Segmentation
Jiayin Ni
Senqiao Yang
Ran Xu
Jiaming Liu
Xiaoqi Li
Wenyu Jiao
Zehui Chen
Yi Liu
Shanghang Zhang
TTA
80
8
0
24 Sep 2023
Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation for Earth System Science Applications
John S. Schreck
D. Gagne
Charlie Becker
William E. Chapman
K. Elmore
...
Vanessa M. Pryzbylo
Jacob T. Radford
B. Saavedra
Justin Willson
Christopher D. Wirz
BDL
UD
OOD
UQCV
EDL
37
9
0
22 Sep 2023
You can have your ensemble and run it too -- Deep Ensembles Spread Over Time
Isak Meding
Alexander Bodin
Adam Tonderski
Joakim Johnander
Christoffer Petersson
Lennart Svensson
OOD
UQCV
48
1
0
20 Sep 2023
Closing the Loop on Runtime Monitors with Fallback-Safe MPC
Rohan Sinha
Edward Schmerling
Marco Pavone
220
11
0
15 Sep 2023
Previous
1
2
3
...
5
6
7
...
20
21
22
Next