ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02530
  4. Cited By
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
    UQCV
ArXivPDFHTML

Papers citing "Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"

50 / 1,042 papers shown
Title
From Pointwise to Powerhouse: Initialising Neural Networks with
  Generative Models
From Pointwise to Powerhouse: Initialising Neural Networks with Generative Models
Christian Harder
Moritz Fuchs
Yuri Tolkach
Anirban Mukhopadhyay
30
0
0
25 Oct 2023
IW-GAE: Importance Weighted Group Accuracy Estimation for Improved
  Calibration and Model Selection in Unsupervised Domain Adaptation
IW-GAE: Importance Weighted Group Accuracy Estimation for Improved Calibration and Model Selection in Unsupervised Domain Adaptation
Taejong Joo
Diego Klabjan
43
1
0
16 Oct 2023
Revisiting Logistic-softmax Likelihood in Bayesian Meta-Learning for
  Few-Shot Classification
Revisiting Logistic-softmax Likelihood in Bayesian Meta-Learning for Few-Shot Classification
Tianjun Ke
Haoqun Cao
Zenan Ling
Feng Zhou
UQCV
30
7
0
16 Oct 2023
Risk-Aware and Explainable Framework for Ensuring Guaranteed Coverage in
  Evolving Hardware Trojan Detection
Risk-Aware and Explainable Framework for Ensuring Guaranteed Coverage in Evolving Hardware Trojan Detection
Rahul Vishwakarma
Amin Rezaei
35
5
0
14 Oct 2023
A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors
A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors
Olivier Laurent
Emanuel Aldea
Gianni Franchi
BDL
UQCV
22
5
0
12 Oct 2023
A review of uncertainty quantification in medical image analysis:
  probabilistic and non-probabilistic methods
A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods
Ling Huang
S. Ruan
Yucheng Xing
Mengling Feng
46
20
0
09 Oct 2023
Prompt-augmented Temporal Point Process for Streaming Event Sequence
Prompt-augmented Temporal Point Process for Streaming Event Sequence
Siqiao Xue
Yan Wang
Zhixuan Chu
Xiaoming Shi
Caigao Jiang
Hongyan Hao
Gangwei Jiang
Xiaoyun Feng
James Y. Zhang
Junqing Zhou
AI4TS
32
24
0
08 Oct 2023
IPMix: Label-Preserving Data Augmentation Method for Training Robust
  Classifiers
IPMix: Label-Preserving Data Augmentation Method for Training Robust Classifiers
Zhenglin Huang
Xianan Bao
Na Zhang
Qingqi Zhang
Xiaomei Tu
Biao Wu
Xi Yang
32
7
0
07 Oct 2023
Distribution-free risk assessment of regression-based machine learning
  algorithms
Distribution-free risk assessment of regression-based machine learning algorithms
Sukrita Singh
Neeraj Sarna
Yuanyuan Li
Yang Li
Agni Orfanoudaki
Michael Berger
OOD
19
3
0
05 Oct 2023
Mitigating the Influence of Domain Shift in Skin Lesion Classification:
  A Benchmark Study of Unsupervised Domain Adaptation Methods on Dermoscopic
  Images
Mitigating the Influence of Domain Shift in Skin Lesion Classification: A Benchmark Study of Unsupervised Domain Adaptation Methods on Dermoscopic Images
Sireesha Chamarthi
Katharina Fogelberg
Roman C. Maron
T. Brinker
Julia Niebling
OOD
31
0
0
05 Oct 2023
Uncertainty quantification for deep learning-based schemes for solving
  high-dimensional backward stochastic differential equations
Uncertainty quantification for deep learning-based schemes for solving high-dimensional backward stochastic differential equations
Lorenc Kapllani
Long Teng
Matthias Rottmann
27
1
0
05 Oct 2023
Assessment of Prediction Intervals Using Uncertainty Characteristics
  Curves
Assessment of Prediction Intervals Using Uncertainty Characteristics Curves
Jirí Navrátil
Benjamin Elder
Matthew Arnold
Soumya Ghosh
P. Sattigeri
27
0
0
04 Oct 2023
Out-of-Distribution Detection by Leveraging Between-Layer Transformation
  Smoothness
Out-of-Distribution Detection by Leveraging Between-Layer Transformation Smoothness
Fran Jelenić
Josip Jukić
Martin Tutek
Mate Puljiz
Jan vSnajder
OODD
32
5
0
04 Oct 2023
Reward Model Ensembles Help Mitigate Overoptimization
Reward Model Ensembles Help Mitigate Overoptimization
Thomas Coste
Usman Anwar
Robert Kirk
David M. Krueger
NoLa
ALM
28
122
0
04 Oct 2023
Unified Uncertainty Calibration
Unified Uncertainty Calibration
Kamalika Chaudhuri
David Lopez-Paz
24
0
0
02 Oct 2023
Deep Neural Networks Tend To Extrapolate Predictably
Deep Neural Networks Tend To Extrapolate Predictably
Katie Kang
Amrith Rajagopal Setlur
Claire Tomlin
Sergey Levine
31
0
0
02 Oct 2023
Skip-Plan: Procedure Planning in Instructional Videos via Condensed
  Action Space Learning
Skip-Plan: Procedure Planning in Instructional Videos via Condensed Action Space Learning
Zhiheng Li
Wenjia Geng
Muheng Li
Lei Chen
Yansong Tang
Jiwen Lu
Jie Zhou
39
9
0
01 Oct 2023
LoRA ensembles for large language model fine-tuning
LoRA ensembles for large language model fine-tuning
Xi Wang
Laurence Aitchison
Maja Rudolph
UQCV
37
35
0
29 Sep 2023
Spurious Feature Diversification Improves Out-of-distribution
  Generalization
Spurious Feature Diversification Improves Out-of-distribution Generalization
Yong Lin
Lu Tan
Yifan Hao
Honam Wong
Hanze Dong
Weizhong Zhang
Yujiu Yang
Tong Zhang
OODD
30
24
0
29 Sep 2023
A Primer on Bayesian Neural Networks: Review and Debates
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
56
18
0
28 Sep 2023
Large Language Model Routing with Benchmark Datasets
Large Language Model Routing with Benchmark Datasets
Tal Shnitzer
Anthony Ou
Mírian Silva
Kate Soule
Yuekai Sun
Justin Solomon
Neil Thompson
Mikhail Yurochkin
RALM
16
58
0
27 Sep 2023
Rapid Network Adaptation: Learning to Adapt Neural Networks Using
  Test-Time Feedback
Rapid Network Adaptation: Learning to Adapt Neural Networks Using Test-Time Feedback
Teresa Yeo
Oğuzhan Fatih Kar
Zahra Sodagar
Amir Zamir
TTA
OOD
31
3
0
27 Sep 2023
On Calibration of Modern Quantized Efficient Neural Networks
On Calibration of Modern Quantized Efficient Neural Networks
Joe-Hwa Kuang
Alexander Wong
UQCV
MQ
27
1
0
25 Sep 2023
Adapt then Unlearn: Exploring Parameter Space Semantics for Unlearning in Generative Adversarial Networks
Adapt then Unlearn: Exploring Parameter Space Semantics for Unlearning in Generative Adversarial Networks
Piyush Tiwary
Atri Guha
Subhodip Panda
Prathosh A.P.
MU
GAN
59
7
0
25 Sep 2023
Distribution-Aware Continual Test-Time Adaptation for Semantic
  Segmentation
Distribution-Aware Continual Test-Time Adaptation for Semantic Segmentation
Jiayin Ni
Senqiao Yang
Ran Xu
Jiaming Liu
Xiaoqi Li
Wenyu Jiao
Zehui Chen
Yi Liu
Shanghang Zhang
TTA
35
7
0
24 Sep 2023
Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation
  for Earth System Science Applications
Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation for Earth System Science Applications
John S. Schreck
D. Gagne
Charlie Becker
William E. Chapman
K. Elmore
...
Vanessa M. Pryzbylo
Jacob T. Radford
B. Saavedra
Justin Willson
Christopher D. Wirz
BDL
UD
OOD
UQCV
EDL
26
8
0
22 Sep 2023
You can have your ensemble and run it too -- Deep Ensembles Spread Over
  Time
You can have your ensemble and run it too -- Deep Ensembles Spread Over Time
Isak Meding
Alexander Bodin
Adam Tonderski
Joakim Johnander
Christoffer Petersson
Lennart Svensson
OOD
UQCV
21
1
0
20 Sep 2023
Closing the Loop on Runtime Monitors with Fallback-Safe MPC
Closing the Loop on Runtime Monitors with Fallback-Safe MPC
Rohan Sinha
Edward Schmerling
Marco Pavone
27
10
0
15 Sep 2023
BEA: Revisiting anchor-based object detection DNN using Budding Ensemble
  Architecture
BEA: Revisiting anchor-based object detection DNN using Budding Ensemble Architecture
S. Qutub
Neslihan Kose
Rafael Rosales
Michael Paulitsch
Korbinian Hagn
Florian Geissler
Yang Peng
Gereon Hinz
Alois C. Knoll
22
3
0
14 Sep 2023
RT-LM: Uncertainty-Aware Resource Management for Real-Time Inference of
  Language Models
RT-LM: Uncertainty-Aware Resource Management for Real-Time Inference of Language Models
Yufei Li
Zexin Li
Wei Yang
Cong Liu
32
6
0
12 Sep 2023
Towards generalisable and calibrated synthetic speech detection with
  self-supervised representations
Towards generalisable and calibrated synthetic speech detection with self-supervised representations
Octavian Pascu
Adriana Stan
Dan Oneaţă
Elisabeta Oneata
H. Cucu
SSL
36
11
0
11 Sep 2023
Affine Invariant Ensemble Transform Methods to Improve Predictive
  Uncertainty in Neural Networks
Affine Invariant Ensemble Transform Methods to Improve Predictive Uncertainty in Neural Networks
Diksha Bhandari
Jakiw Pidstrigach
Sebastian Reich
33
1
0
09 Sep 2023
Multiclass Alignment of Confidence and Certainty for Network Calibration
Multiclass Alignment of Confidence and Certainty for Network Calibration
Vinith Kugathasan
M. H. Khan
UQCV
19
1
0
06 Sep 2023
Building a Winning Team: Selecting Source Model Ensembles using a
  Submodular Transferability Estimation Approach
Building a Winning Team: Selecting Source Model Ensembles using a Submodular Transferability Estimation Approach
KB Vimal
Saketh Bachu
Tanmay Garg
Niveditha Lakshmi Narasimhan
Raghavan Konuru
Vineeth N. Balasubramanian
42
2
0
05 Sep 2023
A Theoretical and Practical Framework for Evaluating Uncertainty
  Calibration in Object Detection
A Theoretical and Practical Framework for Evaluating Uncertainty Calibration in Object Detection
Pedro Conde
Rui L. Lopes
C. Premebida
UQCV
13
1
0
01 Sep 2023
Uncertainty Aware Training to Improve Deep Learning Model Calibration
  for Classification of Cardiac MR Images
Uncertainty Aware Training to Improve Deep Learning Model Calibration for Classification of Cardiac MR Images
Tareen Dawood
Chia-Ju Chen
B. Sidhu
B. Ruijsink
J. Gould
...
Vishal S. Mehta
C. Rinaldi
Esther Puyol-Antón
Reza Razavi
A. King
OOD
30
10
0
29 Aug 2023
Diversified Ensemble of Independent Sub-Networks for Robust
  Self-Supervised Representation Learning
Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation Learning
Amirhossein Vahidi
Lisa Wimmer
H. Gündüz
Bernd Bischl
Eyke Hüllermeier
Mina Rezaei
OOD
UQCV
30
4
0
28 Aug 2023
RankMixup: Ranking-Based Mixup Training for Network Calibration
RankMixup: Ranking-Based Mixup Training for Network Calibration
Jongyoun Noh
Hyekang Park
Junghyup Lee
Bumsub Ham
UQCV
27
9
0
23 Aug 2023
Deep Evidential Learning for Bayesian Quantile Regression
Deep Evidential Learning for Bayesian Quantile Regression
F. B. Hüttel
Filipe Rodrigues
Francisco Câmara Pereira
UD
EDL
BDL
UQCV
23
5
0
21 Aug 2023
Sensitivity analysis of AI-based algorithms for autonomous driving on
  optical wavefront aberrations induced by the windshield
Sensitivity analysis of AI-based algorithms for autonomous driving on optical wavefront aberrations induced by the windshield
D. Wolf
Markus Ulrich
Nikhil Kapoor
37
3
0
19 Aug 2023
Distance Matters For Improving Performance Estimation Under Covariate
  Shift
Distance Matters For Improving Performance Estimation Under Covariate Shift
Mélanie Roschewitz
Ben Glocker
25
1
0
14 Aug 2023
When Monte-Carlo Dropout Meets Multi-Exit: Optimizing Bayesian Neural
  Networks on FPGA
When Monte-Carlo Dropout Meets Multi-Exit: Optimizing Bayesian Neural Networks on FPGA
Hongxiang Fan
Hao Mark Chen
Liam Castelli
Zhiqiang Que
He Li
Kenneth Long
Wayne Luk
BDL
19
2
0
13 Aug 2023
Comparing the quality of neural network uncertainty estimates for
  classification problems
Comparing the quality of neural network uncertainty estimates for classification problems
Daniel Ries
Joshua J. Michalenko
T. Ganter
R. Baiyasi
Jason Adams
UQCV
BDL
29
1
0
11 Aug 2023
LOUC: Leave-One-Out-Calibration Measure for Analyzing Human Matcher
  Performance
LOUC: Leave-One-Out-Calibration Measure for Analyzing Human Matcher Performance
Matan Solomon
Bar Genossar
Roee Shraga
A. Gal
16
0
0
03 Aug 2023
Learning to Generate Training Datasets for Robust Semantic Segmentation
Learning to Generate Training Datasets for Robust Semantic Segmentation
Marwane Hariat
Olivier Laurent
Rémi Kazmierczak
Shihao Zhang
Andrei Bursuc
Angela Yao
Gianni Franchi
UQCV
21
2
0
01 Aug 2023
GradOrth: A Simple yet Efficient Out-of-Distribution Detection with
  Orthogonal Projection of Gradients
GradOrth: A Simple yet Efficient Out-of-Distribution Detection with Orthogonal Projection of Gradients
Sima Behpour
T. Doan
Xin Li
Wenbin He
Liangke Gou
Liu Ren
OODD
43
13
0
01 Aug 2023
Evaluating the Robustness of Test Selection Methods for Deep Neural
  Networks
Evaluating the Robustness of Test Selection Methods for Deep Neural Networks
Qiang Hu
Yuejun Guo
Xiaofei Xie
Maxime Cordy
Wei Ma
Mike Papadakis
Yves Le Traon
NoLa
OOD
30
4
0
29 Jul 2023
EnSolver: Uncertainty-Aware Ensemble CAPTCHA Solvers with Theoretical
  Guarantees
EnSolver: Uncertainty-Aware Ensemble CAPTCHA Solvers with Theoretical Guarantees
D. C. Hoang
Behzad Ousat
Amin Kharraz
Cuong V Nguyen
AAML
26
1
0
27 Jul 2023
Towards Practicable Sequential Shift Detectors
Towards Practicable Sequential Shift Detectors
Oliver Cobb
A. V. Looveren
29
0
0
27 Jul 2023
Understanding Silent Failures in Medical Image Classification
Understanding Silent Failures in Medical Image Classification
Till J. Bungert
L. Kobelke
Paul F. Jaeger
UQCV
38
4
0
27 Jul 2023
Previous
123...567...192021
Next