ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02530
  4. Cited By
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
    UQCV
ArXivPDFHTML

Papers citing "Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"

50 / 1,042 papers shown
Title
Lightweight Pixel Difference Networks for Efficient Visual
  Representation Learning
Lightweight Pixel Difference Networks for Efficient Visual Representation Learning
Z. Su
Jiehua Zhang
Longguang Wang
Hua Zhang
Zhen Liu
M. Pietikäinen
Li Liu
38
20
0
01 Feb 2024
Towards Understanding Variants of Invariant Risk Minimization through
  the Lens of Calibration
Towards Understanding Variants of Invariant Risk Minimization through the Lens of Calibration
Kotaro Yoshida
Hiroki Naganuma
68
1
0
31 Jan 2024
Explaining Predictive Uncertainty by Exposing Second-Order Effects
Explaining Predictive Uncertainty by Exposing Second-Order Effects
Florian Bley
Sebastian Lapuschkin
Wojciech Samek
G. Montavon
35
3
0
30 Jan 2024
Neighbor-Aware Calibration of Segmentation Networks with Penalty-Based
  Constraints
Neighbor-Aware Calibration of Segmentation Networks with Penalty-Based Constraints
Balamurali Murugesan
Sukesh Adiga Vasudeva
Bingyuan Liu
H. Lombaert
Ismail Ben Ayed
Jose Dolz
UQCV
42
5
0
25 Jan 2024
WARM: On the Benefits of Weight Averaged Reward Models
WARM: On the Benefits of Weight Averaged Reward Models
Alexandre Ramé
Nino Vieillard
Léonard Hussenot
Robert Dadashi
Geoffrey Cideron
Olivier Bachem
Johan Ferret
123
94
0
22 Jan 2024
Out-of-Distribution Detection & Applications With Ablated Learned Temperature Energy
Out-of-Distribution Detection & Applications With Ablated Learned Temperature Energy
Will LeVine
Benjamin Pikus
Jacob Phillips
Berk Norman
Fernando Amat Gil
Sean Hendryx
OODD
75
1
0
22 Jan 2024
Deep Ensemble Shape Calibration: Multi-Field Post-hoc Calibration in
  Online Advertising
Deep Ensemble Shape Calibration: Multi-Field Post-hoc Calibration in Online Advertising
Shuai Yang
Hao Yang
Zhuang Zou
Linhe Xu
Shuo Yuan
Yifan Zeng
40
1
0
17 Jan 2024
Uncertainty-Aware Hardware Trojan Detection Using Multimodal Deep
  Learning
Uncertainty-Aware Hardware Trojan Detection Using Multimodal Deep Learning
Rahul Vishwakarma
Amin Rezaei
45
2
0
15 Jan 2024
Uncertainty Awareness of Large Language Models Under Code Distribution
  Shifts: A Benchmark Study
Uncertainty Awareness of Large Language Models Under Code Distribution Shifts: A Benchmark Study
Yufei Li
Simin Chen
Yanghong Guo
Wei Yang
Yue Dong
Cong Liu
UQCV
33
1
0
12 Jan 2024
Accurate and Scalable Estimation of Epistemic Uncertainty for Graph
  Neural Networks
Accurate and Scalable Estimation of Epistemic Uncertainty for Graph Neural Networks
Puja Trivedi
Mark Heimann
Rushil Anirudh
Danai Koutra
Jayaraman J. Thiagarajan
UQCV
31
4
0
07 Jan 2024
Calibration Attacks: A Comprehensive Study of Adversarial Attacks on
  Model Confidence
Calibration Attacks: A Comprehensive Study of Adversarial Attacks on Model Confidence
Stephen Obadinma
Xiaodan Zhu
Hongyu Guo
AAML
14
1
0
05 Jan 2024
SUDO: a framework for evaluating clinical artificial intelligence
  systems without ground-truth annotations
SUDO: a framework for evaluating clinical artificial intelligence systems without ground-truth annotations
Dani Kiyasseh
Aaron Cohen
Chengsheng Jiang
Nicholas Altieri
SyDa
64
10
0
02 Jan 2024
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift
Benjamin Eyre
Elliot Creager
David Madras
Antonio Torralba
Katherine Heller
OOD
OODD
40
1
0
29 Dec 2023
Tractable Function-Space Variational Inference in Bayesian Neural
  Networks
Tractable Function-Space Variational Inference in Bayesian Neural Networks
Tim G. J. Rudner
Zonghao Chen
Yee Whye Teh
Y. Gal
85
39
0
28 Dec 2023
Efficient Deweather Mixture-of-Experts with Uncertainty-aware
  Feature-wise Linear Modulation
Efficient Deweather Mixture-of-Experts with Uncertainty-aware Feature-wise Linear Modulation
Rongyu Zhang
Yulin Luo
Jiaming Liu
Huanrui Yang
Zhen Dong
...
Tomoyuki Okuno
Yohei Nakata
Kurt Keutzer
Yuan Du
Shanghang Zhang
MoMe
MoE
40
3
0
27 Dec 2023
Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty
  from Pre-trained Models
Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty from Pre-trained Models
Gianni Franchi
Olivier Laurent
Maxence Leguéry
Andrei Bursuc
Andrea Pilzer
Angela Yao
UQCV
BDL
23
4
0
23 Dec 2023
Density Uncertainty Quantification with NeRF-Ensembles: Impact of Data
  and Scene Constraints
Density Uncertainty Quantification with NeRF-Ensembles: Impact of Data and Scene Constraints
M. Jäger
Steven Landgraf
B. Jutzi
32
2
0
22 Dec 2023
Unveiling Backbone Effects in CLIP: Exploring Representational Synergies
  and Variances
Unveiling Backbone Effects in CLIP: Exploring Representational Synergies and Variances
Cristian Rodriguez-Opazo
Edison Marrese-Taylor
Ehsan Abbasnejad
Hamed Damirchi
Ignacio M. Jara
Felipe Bravo-Marquez
Anton Van Den Hengel
VLM
54
1
0
22 Dec 2023
Large Language Models are Miscalibrated In-Context Learners
Large Language Models are Miscalibrated In-Context Learners
Chengzu Li
Han Zhou
Goran Glavavs
Anna Korhonen
Ivan Vulić
26
11
0
21 Dec 2023
Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual
  Test-Time Adaptation
Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation
Jiaming Liu
Ran Xu
Senqiao Yang
Renrui Zhang
Qizhe Zhang
Zehui Chen
Yandong Guo
Shanghang Zhang
TTA
35
10
0
19 Dec 2023
On the calibration of neural networks for histological slide-level
  classification
On the calibration of neural networks for histological slide-level classification
Alexander Kurz
H. A. Mehrtens
Tabea-Clara Bucher
T. Brinker
UQCV
MedIm
30
0
0
15 Dec 2023
Reliability in Semantic Segmentation: Can We Use Synthetic Data?
Reliability in Semantic Segmentation: Can We Use Synthetic Data?
Thibaut Loiseau
Tuan-Hung Vu
Mickaël Chen
Patrick Pérez
Matthieu Cord
UQCV
34
12
0
14 Dec 2023
Split-Ensemble: Efficient OOD-aware Ensemble via Task and Model
  Splitting
Split-Ensemble: Efficient OOD-aware Ensemble via Task and Model Splitting
Anthony Chen
Huanrui Yang
Yulu Gan
Denis A. Gudovskiy
Zhen Dong
Haofan Wang
Tomoyuki Okuno
Yohei Nakata
Kurt Keutzer
Shanghang Zhang
34
2
0
14 Dec 2023
Weighted Ensemble Models Are Strong Continual Learners
Weighted Ensemble Models Are Strong Continual Learners
Imad Eddine Marouf
Subhankar Roy
Enzo Tartaglione
Stéphane Lathuilière
CLL
50
17
0
14 Dec 2023
Estimating calibration error under label shift without labels
Estimating calibration error under label shift without labels
Teodora Popordanoska
Gorjan Radevski
Tinne Tuytelaars
Matthew B. Blaschko
27
1
0
14 Dec 2023
Beyond Classification: Definition and Density-based Estimation of
  Calibration in Object Detection
Beyond Classification: Definition and Density-based Estimation of Calibration in Object Detection
Teodora Popordanoska
A. Tiulpin
Matthew B. Blaschko
30
8
0
11 Dec 2023
An Ambiguity Measure for Recognizing the Unknowns in Deep Learning
An Ambiguity Measure for Recognizing the Unknowns in Deep Learning
Roozbeh Yousefzadeh
AAML
UQCV
33
0
0
11 Dec 2023
Benchmarking of Query Strategies: Towards Future Deep Active Learning
Benchmarking of Query Strategies: Towards Future Deep Active Learning
Shiryu Ueno
Yusei Yamada
Shunsuke Nakatsuka
Kunihito Kato
FedML
19
2
0
10 Dec 2023
PAC-Bayes Generalization Certificates for Learned Inductive Conformal
  Prediction
PAC-Bayes Generalization Certificates for Learned Inductive Conformal Prediction
Apoorva Sharma
Sushant Veer
Asher Hancock
Heng Yang
Marco Pavone
Anirudha Majumdar
49
9
0
07 Dec 2023
Data-Centric Digital Agriculture: A Perspective
Data-Centric Digital Agriculture: A Perspective
R. Roscher
Lukas Roth
C. Stachniss
Achim Walter
15
2
0
06 Dec 2023
Bootstrap Your Own Variance
Bootstrap Your Own Variance
Polina Turishcheva
Jason Ramapuram
Sinead Williamson
Dan Busbridge
Eeshan Gunesh Dhekane
Russ Webb
UQCV
26
0
0
06 Dec 2023
Calibrated Adaptive Teacher for Domain Adaptive Intelligent Fault
  Diagnosis
Calibrated Adaptive Teacher for Domain Adaptive Intelligent Fault Diagnosis
Florent Forest
Olga Fink
29
0
0
05 Dec 2023
PaSCo: Urban 3D Panoptic Scene Completion with Uncertainty Awareness
PaSCo: Urban 3D Panoptic Scene Completion with Uncertainty Awareness
Anh-Quan Cao
Angela Dai
Raoul de Charette
UQCV
24
20
0
04 Dec 2023
RankFeat&RankWeight: Rank-1 Feature/Weight Removal for
  Out-of-distribution Detection
RankFeat&RankWeight: Rank-1 Feature/Weight Removal for Out-of-distribution Detection
Yue Song
N. Sebe
Wei Wang
OODD
43
1
0
23 Nov 2023
LM-Cocktail: Resilient Tuning of Language Models via Model Merging
LM-Cocktail: Resilient Tuning of Language Models via Model Merging
Shitao Xiao
Zheng Liu
Peitian Zhang
Xingrun Xing
MoMe
KELM
97
24
0
22 Nov 2023
An Empirical Study of Uncertainty Estimation Techniques for Detecting
  Drift in Data Streams
An Empirical Study of Uncertainty Estimation Techniques for Detecting Drift in Data Streams
Anton Winter
Nicolas Jourdan
Tristan Wirth
Volker Knauthe
Arjan Kuijper
19
1
0
22 Nov 2023
A Baseline Analysis of Reward Models' Ability To Accurately Analyze
  Foundation Models Under Distribution Shift
A Baseline Analysis of Reward Models' Ability To Accurately Analyze Foundation Models Under Distribution Shift
Will LeVine
Benjamin Pikus
Tony Chen
Sean Hendryx
48
8
0
21 Nov 2023
On the Out-of-Distribution Coverage of Combining Split Conformal
  Prediction and Bayesian Deep Learning
On the Out-of-Distribution Coverage of Combining Split Conformal Prediction and Bayesian Deep Learning
Paul Scemama
Ariel Kapusta
46
0
0
21 Nov 2023
Learning Causal Representations from General Environments:
  Identifiability and Intrinsic Ambiguity
Learning Causal Representations from General Environments: Identifiability and Intrinsic Ambiguity
Jikai Jin
Vasilis Syrgkanis
CML
30
5
0
21 Nov 2023
Evidential Uncertainty Quantification: A Variance-Based Perspective
Evidential Uncertainty Quantification: A Variance-Based Perspective
Ruxiao Duan
B. Caffo
Harrison X. Bai
Haris I. Sair
Craig K. Jones
UD
EDL
UQCV
BDL
PER
47
13
0
19 Nov 2023
Informative Priors Improve the Reliability of Multimodal Clinical Data
  Classification
Informative Priors Improve the Reliability of Multimodal Clinical Data Classification
L. J. L. Lopez
Tim G. J. Rudner
Karan Singhal
47
3
0
17 Nov 2023
Neural machine translation for automated feedback on children's
  early-stage writing
Neural machine translation for automated feedback on children's early-stage writing
Jonas Vestergaard Jensen
Mikkel Jordahn
Michael Riis Andersen
31
0
0
15 Nov 2023
Uncertainty Quantification in Machine Learning for Biosignal
  Applications -- A Review
Uncertainty Quantification in Machine Learning for Biosignal Applications -- A Review
Ivo Pascal de Jong
A. Sburlea
Matias Valdenegro-Toro
30
1
0
15 Nov 2023
Llamas Know What GPTs Don't Show: Surrogate Models for Confidence
  Estimation
Llamas Know What GPTs Don't Show: Surrogate Models for Confidence Estimation
Vaishnavi Shrivastava
Percy Liang
Ananya Kumar
28
28
0
15 Nov 2023
Decomposing Uncertainty for Large Language Models through Input
  Clarification Ensembling
Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling
Bairu Hou
Yujian Liu
Kaizhi Qian
Jacob Andreas
Shiyu Chang
Yang Zhang
UD
UQCV
PER
32
49
0
15 Nov 2023
Introducing an Improved Information-Theoretic Measure of Predictive
  Uncertainty
Introducing an Improved Information-Theoretic Measure of Predictive Uncertainty
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
Sepp Hochreiter
31
11
0
14 Nov 2023
Domain Adaptive Object Detection via Balancing Between Self-Training and
  Adversarial Learning
Domain Adaptive Object Detection via Balancing Between Self-Training and Adversarial Learning
Muhammad Akhtar Munir
M. H. Khan
M. Sarfraz
Mohsen Ali
ObjD
59
5
0
08 Nov 2023
Preventing Arbitrarily High Confidence on Far-Away Data in
  Point-Estimated Discriminative Neural Networks
Preventing Arbitrarily High Confidence on Far-Away Data in Point-Estimated Discriminative Neural Networks
Ahmad Rashid
Serena Hacker
Guojun Zhang
Agustinus Kristiadi
Pascal Poupart
OODD
44
0
0
07 Nov 2023
Cal-DETR: Calibrated Detection Transformer
Cal-DETR: Calibrated Detection Transformer
Muhammad Akhtar Munir
Salman Khan
Muhammad Haris Khan
Mohsen Ali
Fahad Shahbaz Khan
48
8
0
06 Nov 2023
MaxEnt Loss: Constrained Maximum Entropy for Calibration under
  Out-of-Distribution Shift
MaxEnt Loss: Constrained Maximum Entropy for Calibration under Out-of-Distribution Shift
Dexter Neo
Stefan Winkler
Tsuhan Chen
OODD
22
3
0
26 Oct 2023
Previous
123456...192021
Next