ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.12664
27
0

Discriminant Distance-Aware Representation on Deterministic Uncertainty Quantification Methods

20 February 2024
Jiaxin Zhang
Kamalika Das
Kumar Sricharan
    UQCV
ArXivPDFHTML
Abstract

Uncertainty estimation is a crucial aspect of deploying dependable deep learning models in safety-critical systems. In this study, we introduce a novel and efficient method for deterministic uncertainty estimation called Discriminant Distance-Awareness Representation (DDAR). Our approach involves constructing a DNN model that incorporates a set of prototypes in its latent representations, enabling us to analyze valuable feature information from the input data. By leveraging a distinction maximization layer over optimal trainable prototypes, DDAR can learn a discriminant distance-awareness representation. We demonstrate that DDAR overcomes feature collapse by relaxing the Lipschitz constraint that hinders the practicality of deterministic uncertainty methods (DUMs) architectures. Our experiments show that DDAR is a flexible and architecture-agnostic method that can be easily integrated as a pluggable layer with distance-sensitive metrics, outperforming state-of-the-art uncertainty estimation methods on multiple benchmark problems.

View on arXiv
Comments on this paper