ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.00891
  4. Cited By
Hyperspherical Variational Auto-Encoders
v1v2v3 (latest)

Hyperspherical Variational Auto-Encoders

3 April 2018
Tim R. Davidson
Luca Falorsi
Nicola De Cao
Thomas Kipf
Jakub M. Tomczak
    DRLBDL
ArXiv (abs)PDFHTMLGithub (230★)

Papers citing "Hyperspherical Variational Auto-Encoders"

50 / 215 papers shown
Title
Neural Ordinary Differential Equations on Manifolds
Neural Ordinary Differential Equations on Manifolds
Luca Falorsi
Patrick Forré
BDLAI4CE
73
33
0
11 Jun 2020
tvGP-VAE: Tensor-variate Gaussian Process Prior Variational Autoencoder
tvGP-VAE: Tensor-variate Gaussian Process Prior Variational Autoencoder
Alexander Campbell
Pietro Lio
BDLCML
72
9
0
08 Jun 2020
The Power Spherical distribution
The Power Spherical distribution
Nicola De Cao
Wilker Aziz
88
29
0
08 Jun 2020
Variational Autoencoder with Embedded Student-$t$ Mixture Model for
  Authorship Attribution
Variational Autoencoder with Embedded Student-ttt Mixture Model for Authorship Attribution
Benedikt T. Boenninghoff
Steffen Zeiler
R. M. Nickel
D. Kolossa
BDLDRL
68
2
0
28 May 2020
Hyperbolic Manifold Regression
Hyperbolic Manifold Regression
Gian Maria Marconi
Lorenzo Rosasco
C. Ciliberto
77
6
0
28 May 2020
Fine-Grain Few-Shot Vision via Domain Knowledge as Hyperspherical Priors
Fine-Grain Few-Shot Vision via Domain Knowledge as Hyperspherical Priors
B. Haney
Alexander Lavin
56
4
0
23 May 2020
Understanding Contrastive Representation Learning through Alignment and
  Uniformity on the Hypersphere
Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere
Tongzhou Wang
Phillip Isola
SSL
185
1,865
0
20 May 2020
Geodesics in fibered latent spaces: A geometric approach to learning
  correspondences between conditions
Geodesics in fibered latent spaces: A geometric approach to learning correspondences between conditions
Tariq Daouda
Reda Chhaibi
Prudencio Tossou
A. Villani
49
2
0
16 May 2020
Maximum likelihood estimation of the Fisher-Bingham distribution via
  efficient calculation of its normalizing constant
Maximum likelihood estimation of the Fisher-Bingham distribution via efficient calculation of its normalizing constant
Yici Chen
Ken’ichiro Tanaka
24
10
0
30 Apr 2020
A Batch Normalized Inference Network Keeps the KL Vanishing Away
A Batch Normalized Inference Network Keeps the KL Vanishing Away
Qile Zhu
Jianlin Su
Wei Bi
Xiaojiang Liu
Xiyao Ma
Xiaolin Li
D. Wu
BDLDRL
85
62
0
27 Apr 2020
On the Encoder-Decoder Incompatibility in Variational Text Modeling and
  Beyond
On the Encoder-Decoder Incompatibility in Variational Text Modeling and Beyond
Chen Henry Wu
P. Wang
Wenjie Wang
DRL
34
4
0
20 Apr 2020
Disentanglement with Hyperspherical Latent Spaces using Diffusion
  Variational Autoencoders
Disentanglement with Hyperspherical Latent Spaces using Diffusion Variational Autoencoders
L. A. P. Rey
DRLCoGe
30
5
0
19 Mar 2020
Max-Affine Spline Insights into Deep Generative Networks
Max-Affine Spline Insights into Deep Generative Networks
Randall Balestriero
Sébastien Paris
Richard Baraniuk
DRLAI4CE
47
15
0
26 Feb 2020
Amortised Learning by Wake-Sleep
Amortised Learning by Wake-Sleep
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
102
7
0
22 Feb 2020
Computationally Tractable Riemannian Manifolds for Graph Embeddings
Computationally Tractable Riemannian Manifolds for Graph Embeddings
Calin Cruceru
Gary Bécigneul
O. Ganea
53
34
0
20 Feb 2020
A Wasserstein Minimum Velocity Approach to Learning Unnormalized Models
A Wasserstein Minimum Velocity Approach to Learning Unnormalized Models
Ziyu Wang
Shuyu Cheng
Yueru Li
Jun Zhu
Bo Zhang
69
14
0
18 Feb 2020
Learning Group Structure and Disentangled Representations of Dynamical
  Environments
Learning Group Structure and Disentangled Representations of Dynamical Environments
Robin Quessard
Thomas D. Barrett
W. Clements
DRL
61
21
0
17 Feb 2020
Latent Variable Modelling with Hyperbolic Normalizing Flows
Latent Variable Modelling with Hyperbolic Normalizing Flows
A. Bose
Ariella Smofsky
Renjie Liao
Prakash Panangaden
William L. Hamilton
DRL
75
69
0
15 Feb 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDLDRL
135
49
0
12 Feb 2020
Normalizing Flows on Tori and Spheres
Normalizing Flows on Tori and Spheres
Danilo Jimenez Rezende
George Papamakarios
S. Racanière
M. S. Albergo
G. Kanwar
P. Shanahan
Kyle Cranmer
TPM
93
157
0
06 Feb 2020
Latent Variables on Spheres for Autoencoders in High Dimensions
Latent Variables on Spheres for Autoencoders in High Dimensions
Deli Zhao
Jiapeng Zhu
Bo Zhang
DRL
43
10
0
21 Dec 2019
Chart Auto-Encoders for Manifold Structured Data
Chart Auto-Encoders for Manifold Structured Data
Stefan C. Schonsheck
Jie Chen
Rongjie Lai
DRLGNN
44
29
0
20 Dec 2019
Representing Closed Transformation Paths in Encoded Network Latent Space
Representing Closed Transformation Paths in Encoded Network Latent Space
Marissa Connor
Christopher Rozell
3DPCDRL
79
28
0
05 Dec 2019
Improving VAE generations of multimodal data through data-dependent
  conditional priors
Improving VAE generations of multimodal data through data-dependent conditional priors
Frantzeska Lavda
Magda Gregorova
Alexandros Kalousis
24
4
0
25 Nov 2019
Mixed-curvature Variational Autoencoders
Mixed-curvature Variational Autoencoders
Ondrej Skopek
O. Ganea
Gary Bécigneul
CMLDRLBDL
76
102
0
19 Nov 2019
Constant Curvature Graph Convolutional Networks
Constant Curvature Graph Convolutional Networks
Gregor Bachmann
Gary Bécigneul
O. Ganea
GNN
117
138
0
12 Nov 2019
DDTCDR: Deep Dual Transfer Cross Domain Recommendation
DDTCDR: Deep Dual Transfer Cross Domain Recommendation
P. Li
Alexander Tuzhilin
110
273
0
11 Oct 2019
Increasing Expressivity of a Hyperspherical VAE
Increasing Expressivity of a Hyperspherical VAE
Tim R. Davidson
Jakub M. Tomczak
E. Gavves
52
5
0
07 Oct 2019
Explicitly disentangling image content from translation and rotation
  with spatial-VAE
Explicitly disentangling image content from translation and rotation with spatial-VAE
Tristan Bepler
Ellen D. Zhong
Kotaro Kelley
E. Brignole
Bonnie Berger
CoGeDRL
78
74
0
25 Sep 2019
Bayes-Factor-VAE: Hierarchical Bayesian Deep Auto-Encoder Models for
  Factor Disentanglement
Bayes-Factor-VAE: Hierarchical Bayesian Deep Auto-Encoder Models for Factor Disentanglement
Minyoung Kim
Yuting Wang
Pritish Sahu
Vladimir Pavlovic
CoGeBDLCMLDRL
80
26
0
06 Sep 2019
Semi-Implicit Graph Variational Auto-Encoders
Semi-Implicit Graph Variational Auto-Encoders
Arman Hasanzadeh
Ehsan Hajiramezanali
N. Duffield
Krishna R. Narayanan
Mingyuan Zhou
Xiaoning Qian
BDLGNN
77
132
0
19 Aug 2019
Not Only Look But Observe: Variational Observation Model of Scene-Level
  3D Multi-Object Understanding for Probabilistic SLAM
Not Only Look But Observe: Variational Observation Model of Scene-Level 3D Multi-Object Understanding for Probabilistic SLAM
Hyeonwoo Yu
DRL
30
0
0
23 Jul 2019
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale
  Bayesian Deep Learning
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning
Sebastian Farquhar
Michael A. Osborne
Y. Gal
UQCVBDL
106
58
0
01 Jul 2019
Coupling Retrieval and Meta-Learning for Context-Dependent Semantic
  Parsing
Coupling Retrieval and Meta-Learning for Context-Dependent Semantic Parsing
Daya Guo
Duyu Tang
Nan Duan
M. Zhou
Jian Yin
RALM
50
49
0
17 Jun 2019
Neural Variational Inference For Estimating Uncertainty in Knowledge
  Graph Embeddings
Neural Variational Inference For Estimating Uncertainty in Knowledge Graph Embeddings
Alexander I. Cowen-Rivers
Pasquale Minervini
Tim Rocktaschel
Matko Bosnjak
Sebastian Riedel
Jun Wang
BDL
75
4
0
12 Jun 2019
Discriminative Few-Shot Learning Based on Directional Statistics
Discriminative Few-Shot Learning Based on Directional Statistics
Junyoung Park
Subin Yi
Yongseok Choi
D.-Y. Cho
Jiwon Kim
18
4
0
05 Jun 2019
A Cross-Sentence Latent Variable Model for Semi-Supervised Text Sequence
  Matching
A Cross-Sentence Latent Variable Model for Semi-Supervised Text Sequence Matching
Jihun Choi
Taeuk Kim
Sang-goo Lee
BDL
72
6
0
04 Jun 2019
Controllable Paraphrase Generation with a Syntactic Exemplar
Controllable Paraphrase Generation with a Syntactic Exemplar
Mingda Chen
Qingming Tang
Sam Wiseman
Kevin Gimpel
BDL
59
111
0
03 Jun 2019
Variational Diffusion Autoencoders with Random Walk Sampling
Variational Diffusion Autoencoders with Random Walk Sampling
Henry Li
Ofir Lindenbaum
Xiuyuan Cheng
A. Cloninger
DRLDiffM
58
1
0
29 May 2019
Anomaly scores for generative models
Anomaly scores for generative models
Václav Smídl
J. Bím
Tomás Pevný
DiffMDRL
25
4
0
28 May 2019
Dueling Decoders: Regularizing Variational Autoencoder Latent Spaces
Dueling Decoders: Regularizing Variational Autoencoder Latent Spaces
Bryan Seybold
Emily Fertig
Alexander A. Alemi
Ian S. Fischer
DRL
89
4
0
17 May 2019
Simulating Execution Time of Tensor Programs using Graph Neural Networks
Simulating Execution Time of Tensor Programs using Graph Neural Networks
Jakub M. Tomczak
Romain Lepert
Auke Wiggers
GNN
37
5
0
26 Apr 2019
Effective Estimation of Deep Generative Language Models
Effective Estimation of Deep Generative Language Models
Tom Pelsmaeker
Wilker Aziz
BDL
83
28
0
17 Apr 2019
Graph-Based Method for Anomaly Prediction in Brain Network
Graph-Based Method for Anomaly Prediction in Brain Network
Jalal Mirakhorli
H. Amindavar
Mojgan Mirakhorli
MedIm
35
1
0
15 Apr 2019
Copula-like Variational Inference
Copula-like Variational Inference
Marcel Hirt
P. Dellaportas
Alain Durmus
38
5
0
15 Apr 2019
A Multi-Task Approach for Disentangling Syntax and Semantics in Sentence
  Representations
A Multi-Task Approach for Disentangling Syntax and Semantics in Sentence Representations
Mingda Chen
Qingming Tang
Sam Wiseman
Kevin Gimpel
DRL
92
76
0
02 Apr 2019
Diagnosing and Enhancing VAE Models
Diagnosing and Enhancing VAE Models
Bin Dai
David Wipf
DRL
75
381
0
14 Mar 2019
A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based
  Learning
A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning
Yoshihiro Nagano
Shoichiro Yamaguchi
Yasuhiro Fujita
Masanori Koyama
BDLDRL
76
15
0
08 Feb 2019
Radial and Directional Posteriors for Bayesian Neural Networks
Radial and Directional Posteriors for Bayesian Neural Networks
Changyong Oh
Kamil Adamczewski
Mijung Park
BDL
113
20
0
07 Feb 2019
Continuous Hierarchical Representations with Poincaré Variational
  Auto-Encoders
Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders
Emile Mathieu
Charline Le Lan
Chris J. Maddison
Ryota Tomioka
Yee Whye Teh
BDLDRL
80
178
0
17 Jan 2019
Previous
12345
Next