ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.00565
11
107

Controllable Paraphrase Generation with a Syntactic Exemplar

3 June 2019
Mingda Chen
Qingming Tang
Sam Wiseman
Kevin Gimpel
    BDL
ArXivPDFHTML
Abstract

Prior work on controllable text generation usually assumes that the controlled attribute can take on one of a small set of values known a priori. In this work, we propose a novel task, where the syntax of a generated sentence is controlled rather by a sentential exemplar. To evaluate quantitatively with standard metrics, we create a novel dataset with human annotations. We also develop a variational model with a neural module specifically designed for capturing syntactic knowledge and several multitask training objectives to promote disentangled representation learning. Empirically, the proposed model is observed to achieve improvements over baselines and learn to capture desirable characteristics.

View on arXiv
Comments on this paper