ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.00891
  4. Cited By
Hyperspherical Variational Auto-Encoders
v1v2v3 (latest)

Hyperspherical Variational Auto-Encoders

3 April 2018
Tim R. Davidson
Luca Falorsi
Nicola De Cao
Thomas Kipf
Jakub M. Tomczak
    DRLBDL
ArXiv (abs)PDFHTMLGithub (230★)

Papers citing "Hyperspherical Variational Auto-Encoders"

50 / 215 papers shown
Title
Encoding Binary Concepts in the Latent Space of Generative Models for
  Enhancing Data Representation
Encoding Binary Concepts in the Latent Space of Generative Models for Enhancing Data Representation
Zizhao Hu
Mohammad Rostami
DRL
41
2
0
22 Mar 2023
Modeling Barrett's Esophagus Progression using Geometric Variational Autoencoders
Modeling Barrett's Esophagus Progression using Geometric Variational Autoencoders
Vivien van Veldhuizen
Sharvaree P. Vadgama
Onno J. de Boer
Sybren Meijer
Erik Bekkers
DRL
68
0
0
17 Mar 2023
Probabilistic Contrastive Learning Recovers the Correct Aleatoric
  Uncertainty of Ambiguous Inputs
Probabilistic Contrastive Learning Recovers the Correct Aleatoric Uncertainty of Ambiguous Inputs
Michael Kirchhof
Enkelejda Kasneci
Seong Joon Oh
UQCV
543
25
0
06 Feb 2023
Simplifying Subgraph Representation Learning for Scalable Link
  Prediction
Simplifying Subgraph Representation Learning for Scalable Link Prediction
Paul Louis
Shweta Ann Jacob
Amirali Salehi-Abari
84
8
0
29 Jan 2023
Contracting Skeletal Kinematics for Human-Related Video Anomaly
  Detection
Contracting Skeletal Kinematics for Human-Related Video Anomaly Detection
Alessandro Flaborea
Guido DÁmely
S. DÁrrigo
Marco Aurelio Sterpa
Alessio Sampieri
Fabio Galasso
105
12
0
23 Jan 2023
Simplex Autoencoders
Simplex Autoencoders
Aymene Mohammed Bouayed
D. Naccache
SyDa
55
0
0
16 Jan 2023
Self-Attention Amortized Distributional Projection Optimization for
  Sliced Wasserstein Point-Cloud Reconstruction
Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction
Khai Nguyen
Dang Nguyen
N. Ho
78
9
0
12 Jan 2023
Markovian Sliced Wasserstein Distances: Beyond Independent Projections
Markovian Sliced Wasserstein Distances: Beyond Independent Projections
Khai Nguyen
Zhaolin Ren
Nhat Ho
78
8
0
10 Jan 2023
Hyperspherical Quantization: Toward Smaller and More Accurate Models
Hyperspherical Quantization: Toward Smaller and More Accurate Models
Dan Liu
X. Chen
Chen Ma
Xue Liu
MQ
63
3
0
24 Dec 2022
Hyperspherical Loss-Aware Ternary Quantization
Hyperspherical Loss-Aware Ternary Quantization
Dan Liu
Xue Liu
MQ
60
0
0
24 Dec 2022
Diffusion Models for Medical Image Analysis: A Comprehensive Survey
Diffusion Models for Medical Image Analysis: A Comprehensive Survey
Amirhossein Kazerouni
Ehsan Khodapanah Aghdam
Moein Heidari
Reza Azad
Mohsen Fayyaz
Ilker Hacihaliloglu
Dorit Merhof
DiffMMedIm
135
396
0
14 Nov 2022
Relating graph auto-encoders to linear models
Relating graph auto-encoders to linear models
Solveig Klepper
U. V. Luxburg
66
1
0
03 Nov 2022
Improving Variational Autoencoders with Density Gap-based Regularization
Improving Variational Autoencoders with Density Gap-based Regularization
Jianfei Zhang
Jun Bai
Chenghua Lin
Yanmeng Wang
Wenge Rong
DRL
68
6
0
01 Nov 2022
Linkless Link Prediction via Relational Distillation
Linkless Link Prediction via Relational Distillation
Zhichun Guo
William Shiao
Shichang Zhang
Yozen Liu
Nitesh Chawla
Neil Shah
Tong Zhao
118
43
0
11 Oct 2022
Application of Deep Learning on Single-Cell RNA-sequencing Data
  Analysis: A Review
Application of Deep Learning on Single-Cell RNA-sequencing Data Analysis: A Review
M. Brendel
Chang Su
Zilong Bai
Hao Zhang
O. Elemento
Fei Wang
90
43
0
11 Oct 2022
Unifying Diffusion Models' Latent Space, with Applications to
  CycleDiffusion and Guidance
Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance
Chen Henry Wu
Fernando de la Torre
DiffM
112
69
0
11 Oct 2022
Continual Learning by Modeling Intra-Class Variation
Continual Learning by Modeling Intra-Class Variation
L. Yu
Tianyang Hu
Lanqing Hong
Zhen Liu
Adrian Weller
Weiyang Liu
CLL
83
13
0
11 Oct 2022
Understanding Neural Coding on Latent Manifolds by Sharing Features and
  Dividing Ensembles
Understanding Neural Coding on Latent Manifolds by Sharing Features and Dividing Ensembles
Martin Bjerke
Lukas Schott
Kristopher T. Jensen
Claudia Battistin
David A. Klindt
Benjamin A. Dunn
75
7
0
06 Oct 2022
Hyperbolic VAE via Latent Gaussian Distributions
Hyperbolic VAE via Latent Gaussian Distributions
Seunghyuk Cho
Juyong Lee
Dongwoo Kim
DRL
125
8
0
30 Sep 2022
A Geometric Perspective on Variational Autoencoders
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
93
24
0
15 Sep 2022
Semi-Supervised Manifold Learning with Complexity Decoupled Chart
  Autoencoders
Semi-Supervised Manifold Learning with Complexity Decoupled Chart Autoencoders
Stefan C. Schonsheck
Scott Mahan
T. Klock
A. Cloninger
Rongjie Lai
DRL
64
5
0
22 Aug 2022
Self-supervised learning with rotation-invariant kernels
Self-supervised learning with rotation-invariant kernels
Léon Zheng
Gilles Puy
E. Riccietti
Patrick Pérez
Rémi Gribonval
SSL
58
2
0
28 Jul 2022
A Non-isotropic Probabilistic Take on Proxy-based Deep Metric Learning
A Non-isotropic Probabilistic Take on Proxy-based Deep Metric Learning
Michael Kirchhof
Karsten Roth
Zeynep Akata
Enkelejda Kasneci
97
13
0
08 Jul 2022
Text to Image Synthesis using Stacked Conditional Variational
  Autoencoders and Conditional Generative Adversarial Networks
Text to Image Synthesis using Stacked Conditional Variational Autoencoders and Conditional Generative Adversarial Networks
Haileleol Tibebu
Aadin Malik
V. D. Silva
GAN
44
7
0
06 Jul 2022
Debiasing Learning for Membership Inference Attacks Against Recommender
  Systems
Debiasing Learning for Membership Inference Attacks Against Recommender Systems
Zihan Wang
Na Huang
Fei Sun
Pengjie Ren
Zhumin Chen
Hengliang Luo
Maarten de Rijke
Zhaochun Ren
AAML
114
16
0
24 Jun 2022
Few-Shot Non-Parametric Learning with Deep Latent Variable Model
Few-Shot Non-Parametric Learning with Deep Latent Variable Model
Zhiying Jiang
Yi-Zhu Dai
Ji Xin
Ming Li
Jimmy J. Lin
72
5
0
23 Jun 2022
Revisiting lp-constrained Softmax Loss: A Comprehensive Study
Revisiting lp-constrained Softmax Loss: A Comprehensive Study
C. Trivedi
Konstantinos Makantasis
Antonios Liapis
Georgios N. Yannakakis
35
1
0
20 Jun 2022
Two-Dimensional Weisfeiler-Lehman Graph Neural Networks for Link
  Prediction
Two-Dimensional Weisfeiler-Lehman Graph Neural Networks for Link Prediction
Yangyi Hu
Xiyuan Wang
Zhouchen Lin
Pan Li
Muhan Zhang
55
7
0
20 Jun 2022
Spherical Sliced-Wasserstein
Spherical Sliced-Wasserstein
Clément Bonet
P. Berg
Nicolas Courty
Françcois Septier
Lucas Drumetz
Minh Pham
95
27
0
17 Jun 2022
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use
  Case
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Clément Chadebec
Louis J. Vincent
S. Allassonnière
DRL
98
30
0
16 Jun 2022
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
Ryan Lopez
P. Atzberger
AI4CE
116
8
0
10 Jun 2022
Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances
Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances
Ruben Ohana
Kimia Nadjahi
A. Rakotomamonjy
L. Ralaivola
37
6
0
07 Jun 2022
Hyperspherical Consistency Regularization
Hyperspherical Consistency Regularization
Cheng Tan
Zhangyang Gao
Lirong Wu
Siyuan Li
Stan Z. Li
108
26
0
02 Jun 2022
SQ-VAE: Variational Bayes on Discrete Representation with Self-annealed
  Stochastic Quantization
SQ-VAE: Variational Bayes on Discrete Representation with Self-annealed Stochastic Quantization
Yuhta Takida
Takashi Shibuya
Wei-Hsiang Liao
Chieh-Hsin Lai
Junki Ohmura
Toshimitsu Uesaka
Naoki Murata
Shusuke Takahashi
Toshiyuki Kumakura
Yuki Mitsufuji
BDL
85
67
0
16 May 2022
Randomized geometric tools for anomaly detection in stock markets
Randomized geometric tools for anomaly detection in stock markets
Cyril Bachelard
Apostolos Chalkis
Vissarion Fisikopoulos
Elias P. Tsigaridas
55
1
0
08 May 2022
Parametric Generative Schemes with Geometric Constraints for Encoding
  and Synthesizing Airfoils
Parametric Generative Schemes with Geometric Constraints for Encoding and Synthesizing Airfoils
Hairun Xie
Jing Wang
Miao Zhang
36
10
0
05 May 2022
Wrapped Distributions on homogeneous Riemannian manifolds
Wrapped Distributions on homogeneous Riemannian manifolds
F. Galaz‐García
Marios Papamichalis
K. Turnbull
Simón Lunagómez
E. Airoldi
75
9
0
20 Apr 2022
AMCAD: Adaptive Mixed-Curvature Representation based Advertisement
  Retrieval System
AMCAD: Adaptive Mixed-Curvature Representation based Advertisement Retrieval System
Zhirong Xu
Shiyang Wen
Junshan Wang
Guojun Liu
Liang Wang
...
Lei Ding
Yan Zhang
Di Zhang
Han Zhu
Bo Zheng
64
9
0
28 Mar 2022
Representation Uncertainty in Self-Supervised Learning as Variational
  Inference
Representation Uncertainty in Self-Supervised Learning as Variational Inference
Hiroki Nakamura
Masashi Okada
T. Taniguchi
82
19
0
22 Mar 2022
No Shifted Augmentations (NSA): compact distributions for robust
  self-supervised Anomaly Detection
No Shifted Augmentations (NSA): compact distributions for robust self-supervised Anomaly Detection
Mohamed Yousef
Marcel R. Ackermann
Unmesh Kurup
Tom E. Bishop
OODDOOD
95
3
0
19 Mar 2022
Curvature Graph Generative Adversarial Networks
Curvature Graph Generative Adversarial Networks
Jianxin Li
Xingcheng Fu
Qingyun Sun
Cheng Ji
Jiajun Tan
Hongzhi Zhang
Hao Peng
GAN
62
13
0
03 Mar 2022
Probabilistic Embeddings Revisited
Probabilistic Embeddings Revisited
I. Karpukhin
Stanislav Dereka
Sergey Kolesnikov
UQCVAAML
47
10
0
14 Feb 2022
AutoHEnsGNN: Winning Solution to AutoGraph Challenge for KDD Cup 2020
AutoHEnsGNN: Winning Solution to AutoGraph Challenge for KDD Cup 2020
Jin Xu
Mingjian Chen
Jianqiang Huang
Xingyuan Tang
Ke Hu
Jian Li
Jia Cheng
Jun Lei
58
2
0
25 Nov 2021
Geometric Priors for Scientific Generative Models in Inertial
  Confinement Fusion
Geometric Priors for Scientific Generative Models in Inertial Confinement Fusion
Ankita Shukla
Rushil Anirudh
E. Kur
Jayaraman J. Thiagarajan
P. Bremer
B. Spears
Tammy Ma
Pavan Turaga
GAN
18
1
0
24 Nov 2021
Multi network InfoMax: A pre-training method involving graph
  convolutional networks
Multi network InfoMax: A pre-training method involving graph convolutional networks
Usman Mahmood
Z. Fu
Vince D. Calhoun
Sergey Plis
AI4CE
24
1
0
01 Nov 2021
Momentum Contrastive Autoencoder: Using Contrastive Learning for Latent
  Space Distribution Matching in WAE
Momentum Contrastive Autoencoder: Using Contrastive Learning for Latent Space Distribution Matching in WAE
Devansh Arpit
Aadyot Bhatnagar
Huan Wang
Caiming Xiong
40
0
0
19 Oct 2021
MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without
  Retraining
MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without Retraining
Ahmed Imtiaz Humayun
Randall Balestriero
Richard Baraniuk
OOD
129
31
0
15 Oct 2021
On the Latent Holes of VAEs for Text Generation
On the Latent Holes of VAEs for Text Generation
Ruizhe Li
Xutan Peng
Chenghua Lin
102
4
0
07 Oct 2021
Causal Representation Learning for Context-Aware Face Transfer
Causal Representation Learning for Context-Aware Face Transfer
Gege Gao
Huaibo Huang
Chaoyou Fu
Ran He
CVBM
48
0
0
04 Oct 2021
Learning Compact Representations of Neural Networks using DiscriminAtive
  Masking (DAM)
Learning Compact Representations of Neural Networks using DiscriminAtive Masking (DAM)
Jie Bu
Arka Daw
M. Maruf
Anuj Karpatne
107
5
0
01 Oct 2021
Previous
12345
Next