Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.00891
Cited By
v1
v2
v3 (latest)
Hyperspherical Variational Auto-Encoders
3 April 2018
Tim R. Davidson
Luca Falorsi
Nicola De Cao
Thomas Kipf
Jakub M. Tomczak
DRL
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Github (230★)
Papers citing
"Hyperspherical Variational Auto-Encoders"
50 / 215 papers shown
Title
SphereFace Revived: Unifying Hyperspherical Face Recognition
Weiyang Liu
Yandong Wen
Bhiksha Raj
Rita Singh
Adrian Weller
3DH
CVBM
100
39
0
12 Sep 2021
Transfer Learning from an Artificial Radiograph-landmark Dataset for Registration of the Anatomic Skull Model to Dual Fluoroscopic X-ray Images
Chaochao Zhou
T. Cha
Yun Peng
Guoan Li
MedIm
41
8
0
14 Aug 2021
On The Distribution of Penultimate Activations of Classification Networks
Minkyo Seo
Yoonho Lee
Suha Kwak
UQCV
49
4
0
05 Jul 2021
Exploring the Latent Space of Autoencoders with Interventional Assays
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
93
18
0
30 Jun 2021
Leveraging Hidden Structure in Self-Supervised Learning
Emanuele Sansone
SSL
32
0
0
30 Jun 2021
On the Generative Utility of Cyclic Conditionals
Chang-Shu Liu
Haoyue Tang
Tao Qin
Jintao Wang
Tie-Yan Liu
82
3
0
30 Jun 2021
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
99
11
0
25 Jun 2021
G-VAE, a Geometric Convolutional VAE for ProteinStructure Generation
Hao Huang
Boulbaba Ben Amor
Xichan Lin
Fan Zhu
Yi Fang
DRL
51
7
0
22 Jun 2021
Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction
Zhaocheng Zhu
Zuobai Zhang
Louis-Pascal Xhonneux
Jian Tang
GNN
101
329
0
13 Jun 2021
Pulling back information geometry
Georgios Arvanitidis
Miguel González Duque
Alison Pouplin
Dimitris Kalatzis
Søren Hauberg
DRL
76
17
0
09 Jun 2021
Pseudo-Riemannian Graph Convolutional Networks
Bo Xiong
Shichao Zhu
Nico Potyka
Shirui Pan
Chuan Zhou
Steffen Staab
GNN
105
28
0
06 Jun 2021
Local Disentanglement in Variational Auto-Encoders Using Jacobian
L
1
L_1
L
1
Regularization
Travers Rhodes
Daniel D. Lee
DRL
80
16
0
05 Jun 2021
Learning from Counterfactual Links for Link Prediction
Tong Zhao
Gang Liu
Daheng Wang
Wenhao Yu
Meng Jiang
CML
OOD
89
100
0
03 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
137
133
0
14 May 2021
Autoencoding Under Normalization Constraints
Sangwoong Yoon
Yung-Kyun Noh
Frank C. Park
OODD
UQCV
84
39
0
12 May 2021
Contrastive Attraction and Contrastive Repulsion for Representation Learning
Huangjie Zheng
Xu Chen
Jiangchao Yao
Hongxia Yang
Chunyuan Li
Ya Zhang
Hao Zhang
Ivor Tsang
Jingren Zhou
Mingyuan Zhou
SSL
113
12
0
08 May 2021
ResVGAE: Going Deeper with Residual Modules for Link Prediction
Indrit Nallbani
Reyhan Kevser Keser
Aydin Ayanzadeh
Nurullah cCalik
B. U. Toreyin
19
0
0
03 May 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
129
69
0
30 Apr 2021
Eccentric Regularization: Minimizing Hyperspherical Energy without explicit projection
Xuefeng Li
Alan Blair
53
0
0
23 Apr 2021
Dual Metric Learning for Effective and Efficient Cross-Domain Recommendations
Pan Li
Alexander Tuzhilin
70
53
0
17 Apr 2021
von Mises-Fisher Loss: An Exploration of Embedding Geometries for Supervised Learning
Tyler R. Scott
Andrew C. Gallagher
Michael C. Mozer
97
42
0
29 Mar 2021
Continuous normalizing flows on manifolds
Luca Falorsi
BDL
AI4CE
72
10
0
14 Mar 2021
Learning with Hyperspherical Uniformity
Weiyang Liu
Rongmei Lin
Zhen Liu
Li Xiong
Bernhard Schölkopf
Adrian Weller
117
36
0
02 Mar 2021
A survey on Variational Autoencoders from a GreenAI perspective
Andrea Asperti
David Evangelista
E. Loli Piccolomini
DRL
91
52
0
01 Mar 2021
Addressing the Topological Defects of Disentanglement via Distributed Operators
Diane Bouchacourt
Mark Ibrahim
Stéphane Deny
38
22
0
10 Feb 2021
On PyTorch Implementation of Density Estimators for von Mises-Fisher and Its Mixture
Minyoung Kim
38
6
0
10 Feb 2021
Memory-Associated Differential Learning
Yi Luo
Aiguo Chen
Bei Hui
Ke Yan
89
3
0
10 Feb 2021
Variational Autoencoders for Learning Nonlinear Dynamics of Physical Systems
Ryan Lopez
P. Atzberger
DRL
AI4CE
58
13
0
07 Dec 2020
Generative Capacity of Probabilistic Protein Sequence Models
Francisco McGee
Quentin Novinger
R. Levy
Vincenzo Carnevale
A. Haldane
81
34
0
03 Dec 2020
What is a meaningful representation of protein sequences?
N. Detlefsen
Søren Hauberg
Wouter Boomsma
115
115
0
28 Nov 2020
SHOT-VAE: Semi-supervised Deep Generative Models With Label-aware ELBO Approximations
Hao Feng
Kezhi Kong
Minghao Chen
Tianye Zhang
Minfeng Zhu
Wei Chen
VLM
DRL
169
24
0
21 Nov 2020
Cost-effective Variational Active Entity Resolution
Alex Bogatu
N. Paton
Mark Douthwaite
Stuart Davie
André Freitas
61
9
0
20 Nov 2020
Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational Inference
Ali Lotfi-Rezaabad
Rahi Kalantari
S. Vishwanath
Mingyuan Zhou
Jonathan I. Tamir
14
2
0
31 Oct 2020
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
84
16
0
22 Oct 2020
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
144
3
0
22 Oct 2020
High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds
Noémie Jaquier
Leonel Rozo
103
24
0
21 Oct 2020
Improving Relational Regularized Autoencoders with Spherical Sliced Fused Gromov Wasserstein
Khai Nguyen
S. Nguyen
Nhat Ho
Tung Pham
Hung Bui
117
21
0
05 Oct 2020
Generative Model without Prior Distribution Matching
Cong Geng
Jia Wang
Lixing Chen
Zhiyong Gao
GAN
385
1
0
23 Sep 2020
Computational Analysis of Deformable Manifolds: from Geometric Modelling to Deep Learning
Stefan C. Schonsheck
37
0
0
03 Sep 2020
Stochastic Graph Recurrent Neural Network
Tijin Yan
Hongwei Zhang
Zirui Li
Yuanqing Xia
GNN
BDL
30
5
0
01 Sep 2020
Orientation-Disentangled Unsupervised Representation Learning for Computational Pathology
Maxime W. Lafarge
J. Pluim
M. Veta
DRL
46
8
0
26 Aug 2020
A Boundary Based Out-of-Distribution Classifier for Generalized Zero-Shot Learning
Xingyu Chen
Xuguang Lan
F. Sun
Nanning Zheng
OODD
84
77
0
09 Aug 2020
Geometrically Enriched Latent Spaces
Georgios Arvanitidis
Søren Hauberg
Bernhard Schölkopf
DRL
77
55
0
02 Aug 2020
Unsupervised Learning of Lagrangian Dynamics from Images for Prediction and Control
Yaofeng Desmond Zhong
Naomi Ehrich Leonard
DRL
AI4CE
95
43
0
03 Jul 2020
Directional Primitives for Uncertainty-Aware Motion Estimation in Urban Environments
Ransalu Senanayake
Maneekwan Toyungyernsub
Mingyu Wang
Mykel J. Kochenderfer
Mac Schwager
77
6
0
01 Jul 2020
Manifolds for Unsupervised Visual Anomaly Detection
Louise Naud
Alexander Lavin
DRL
79
6
0
19 Jun 2020
Riemannian Continuous Normalizing Flows
Emile Mathieu
Maximilian Nickel
AI4CE
136
126
0
18 Jun 2020
Variational Autoencoder with Learned Latent Structure
Marissa Connor
Gregory H. Canal
Christopher Rozell
CML
DRL
100
47
0
18 Jun 2020
Neural Manifold Ordinary Differential Equations
Aaron Lou
Derek Lim
Isay Katsman
Leo Huang
Qingxuan Jiang
Ser-Nam Lim
Christopher De Sa
BDL
AI4CE
83
81
0
18 Jun 2020
Manifold GPLVMs for discovering non-Euclidean latent structure in neural data
Kristopher T. Jensen
Ta-Chu Kao
Marco Tripodi
Guillaume Hennequin
DRL
84
32
0
12 Jun 2020
Previous
1
2
3
4
5
Next