Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00165
Cited By
v1
v2
v3 (latest)
Deep Neural Networks as Gaussian Processes
1 November 2017
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Neural Networks as Gaussian Processes"
50 / 696 papers shown
Title
Empirical analysis of representation learning and exploration in neural kernel bandits
Michal Lisicki
Arash Afkanpour
Graham W. Taylor
57
0
0
05 Nov 2021
Dynamics of Local Elasticity During Training of Neural Nets
Soham Dan
Anirbit Mukherjee
Avirup Das
Phanideep Gampa
78
0
0
01 Nov 2021
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
62
2
0
30 Oct 2021
PAC-Bayesian Learning of Aggregated Binary Activated Neural Networks with Probabilities over Representations
Louis Fortier-Dubois
Gaël Letarte
Benjamin Leblanc
Franccois Laviolette
Pascal Germain
UQCV
88
0
0
28 Oct 2021
Periodic Activation Functions Induce Stationarity
Lassi Meronen
Martin Trapp
Arno Solin
BDL
95
21
0
26 Oct 2021
Learning curves for Gaussian process regression with power-law priors and targets
Hui Jin
P. Banerjee
Guido Montúfar
76
18
0
23 Oct 2021
Using scientific machine learning for experimental bifurcation analysis of dynamic systems
S. Beregi
David A.W. Barton
D. Rezgui
S. Neild
AI4CE
85
20
0
22 Oct 2021
Feature Learning and Signal Propagation in Deep Neural Networks
Yizhang Lou
Chris Mingard
Yoonsoo Nam
Soufiane Hayou
MDE
89
18
0
22 Oct 2021
Self-supervised denoising for massive noisy images
Feng Wang
Trond R. Henninen
D. Keller
R. Erni
158
0
0
18 Oct 2021
Centroid Approximation for Bootstrap: Improving Particle Quality at Inference
Mao Ye
Qiang Liu
60
1
0
17 Oct 2021
Training Neural Networks for Solving 1-D Optimal Piecewise Linear Approximation
Hangcheng Dong
Jing-Xiao Liao
Yan Wang
Yixin Chen
Bingguo Liu
Dong Ye
Guodong Liu
320
0
0
14 Oct 2021
Implicit Bias of Linear Equivariant Networks
Hannah Lawrence
Kristian Georgiev
A. Dienes
B. Kiani
AI4CE
125
15
0
12 Oct 2021
On out-of-distribution detection with Bayesian neural networks
Francesco DÁngelo
Christian Henning
BDL
UQCV
97
6
0
12 Oct 2021
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations
Jiayao Zhang
Hua Wang
Weijie J. Su
103
8
0
11 Oct 2021
Kernel Interpolation as a Bayes Point Machine
Jeremy Bernstein
Alexander R. Farhang
Yisong Yue
BDL
77
4
0
08 Oct 2021
New Insights into Graph Convolutional Networks using Neural Tangent Kernels
Mahalakshmi Sabanayagam
Pascal Esser
Debarghya Ghoshdastidar
78
6
0
08 Oct 2021
The Eigenlearning Framework: A Conservation Law Perspective on Kernel Regression and Wide Neural Networks
James B. Simon
Madeline Dickens
Dhruva Karkada
M. DeWeese
161
28
0
08 Oct 2021
Bayesian neural network unit priors and generalized Weibull-tail property
M. Vladimirova
Julyan Arbel
Stéphane Girard
BDL
105
9
0
06 Oct 2021
On the Impact of Stable Ranks in Deep Nets
B. Georgiev
L. Franken
Mayukh Mukherjee
Georgios Arvanitidis
71
3
0
05 Oct 2021
On the Correspondence between Gaussian Processes and Geometric Harmonics
Felix Dietrich
J. M. Bello-Rivas
Ioannis G. Kevrekidis
78
3
0
05 Oct 2021
Random matrices in service of ML footprint: ternary random features with no performance loss
Hafiz Tiomoko Ali
Zhenyu Liao
Romain Couillet
87
7
0
05 Oct 2021
Learning through atypical "phase transitions" in overparameterized neural networks
Carlo Baldassi
Clarissa Lauditi
Enrico M. Malatesta
R. Pacelli
Gabriele Perugini
R. Zecchina
114
27
0
01 Oct 2021
The edge of chaos: quantum field theory and deep neural networks
Kevin T. Grosvenor
R. Jefferson
90
22
0
27 Sep 2021
Understanding neural networks with reproducing kernel Banach spaces
Francesca Bartolucci
Ernesto De Vito
Lorenzo Rosasco
Stefano Vigogna
105
51
0
20 Sep 2021
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes
Jongseo Lee
Jianxiang Feng
Matthias Humt
M. Müller
Rudolph Triebel
UQCV
92
22
0
20 Sep 2021
Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks
Zhichao Wang
Yizhe Zhu
116
20
0
20 Sep 2021
Uniform Generalization Bounds for Overparameterized Neural Networks
Sattar Vakili
Michael Bromberg
Jezabel R. Garcia
Da-shan Shiu
A. Bernacchia
125
21
0
13 Sep 2021
Large-Scale Learning with Fourier Features and Tensor Decompositions
Frederiek Wesel
Kim Batselier
64
11
0
03 Sep 2021
A theory of representation learning gives a deep generalisation of kernel methods
Adam X. Yang
Maxime Robeyns
Edward Milsom
Ben Anson
Nandi Schoots
Laurence Aitchison
BDL
103
11
0
30 Aug 2021
Neural Network Gaussian Processes by Increasing Depth
Shao-Qun Zhang
Fei Wang
Feng-lei Fan
99
7
0
29 Aug 2021
Shift-Curvature, SGD, and Generalization
Arwen V. Bradley
C. Gomez-Uribe
Manish Reddy Vuyyuru
70
3
0
21 Aug 2021
Nonperturbative renormalization for the neural network-QFT correspondence
Harold Erbin
Vincent Lahoche
D. O. Samary
110
30
0
03 Aug 2021
Deep Stable neural networks: large-width asymptotics and convergence rates
Stefano Favaro
S. Fortini
Stefano Peluchetti
BDL
67
14
0
02 Aug 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
120
239
0
27 Jul 2021
Are Bayesian neural networks intrinsically good at out-of-distribution detection?
Christian Henning
Francesco DÁngelo
Benjamin Grewe
UQCV
BDL
75
10
0
26 Jul 2021
A brief note on understanding neural networks as Gaussian processes
Mengwu Guo
BDL
GP
92
2
0
25 Jul 2021
A variational approximate posterior for the deep Wishart process
Sebastian W. Ober
Laurence Aitchison
BDL
57
11
0
21 Jul 2021
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion
D. Kunin
Javier Sagastuy-Breña
Lauren Gillespie
Eshed Margalit
Hidenori Tanaka
Surya Ganguli
Daniel L. K. Yamins
108
20
0
19 Jul 2021
Epistemic Neural Networks
Ian Osband
Zheng Wen
M. Asghari
Vikranth Dwaracherla
M. Ibrahimi
Xiyuan Lu
Benjamin Van Roy
UQCV
BDL
148
109
0
19 Jul 2021
Understanding the Distributions of Aggregation Layers in Deep Neural Networks
Eng-Jon Ong
S. Husain
M. Bober
FAtt
FedML
AI4CE
33
2
0
09 Jul 2021
Logit-based Uncertainty Measure in Classification
Huiyue Wu
Diego Klabjan
EDL
BDL
UQCV
47
6
0
06 Jul 2021
Random Neural Networks in the Infinite Width Limit as Gaussian Processes
Boris Hanin
BDL
105
48
0
04 Jul 2021
Scale Mixtures of Neural Network Gaussian Processes
Hyungi Lee
Eunggu Yun
Hongseok Yang
Juho Lee
UQCV
BDL
67
7
0
03 Jul 2021
Subspace Clustering Based Analysis of Neural Networks
Uday Singh Saini
Pravallika Devineni
Evangelos E. Papalexakis
GNN
35
1
0
02 Jul 2021
Implicit Acceleration and Feature Learning in Infinitely Wide Neural Networks with Bottlenecks
Etai Littwin
Omid Saremi
Shuangfei Zhai
Vimal Thilak
Hanlin Goh
J. Susskind
Greg Yang
80
3
0
01 Jul 2021
Saddle-to-Saddle Dynamics in Deep Linear Networks: Small Initialization Training, Symmetry, and Sparsity
Arthur Jacot
François Ged
Berfin cSimcsek
Clément Hongler
Franck Gabriel
97
55
0
30 Jun 2021
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCV
BDL
146
101
0
22 Jun 2021
Deep Gaussian Processes: A Survey
Kalvik Jakkala
AI4CE
GP
BDL
80
20
0
21 Jun 2021
Scalable Safety-Critical Policy Evaluation with Accelerated Rare Event Sampling
Mengdi Xu
Peide Huang
Fengpei Li
Jiacheng Zhu
Xuewei Qi
K. Oguchi
Zhiyuan Huang
Henry Lam
Ding Zhao
63
4
0
19 Jun 2021
α
α
α
-Stable convergence of heavy-tailed infinitely-wide neural networks
Paul Jung
Hoileong Lee
Jiho Lee
Hongseok Yang
68
5
0
18 Jun 2021
Previous
1
2
3
...
7
8
9
...
12
13
14
Next