Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00165
Cited By
v1
v2
v3 (latest)
Deep Neural Networks as Gaussian Processes
1 November 2017
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Neural Networks as Gaussian Processes"
50 / 696 papers shown
Title
Wider Networks Learn Better Features
D. Gilboa
Guy Gur-Ari
59
7
0
25 Sep 2019
Neural networks are a priori biased towards Boolean functions with low entropy
Chris Mingard
Joar Skalse
Guillermo Valle Pérez
David Martínez-Rubio
Vladimir Mikulik
A. Louis
FAtt
AI4CE
113
39
0
25 Sep 2019
Asymptotics of Wide Networks from Feynman Diagrams
Ethan Dyer
Guy Gur-Ari
120
115
0
25 Sep 2019
PAC-Bayesian Bounds for Deep Gaussian Processes
R. Foll
Ingo Steinwart
BDL
44
1
0
22 Sep 2019
Adversarial Vulnerability Bounds for Gaussian Process Classification
M. Smith
Kathrin Grosse
Michael Backes
Mauricio A. Alvarez
AAML
60
9
0
19 Sep 2019
Deep kernel learning for integral measurements
Carl Jidling
J. Hendriks
Thomas B. Schon
A. Wills
78
7
0
04 Sep 2019
Neural Policy Gradient Methods: Global Optimality and Rates of Convergence
Lingxiao Wang
Qi Cai
Zhuoran Yang
Zhaoran Wang
121
242
0
29 Aug 2019
Deep Learning Theory Review: An Optimal Control and Dynamical Systems Perspective
Guan-Horng Liu
Evangelos A. Theodorou
AI4CE
125
72
0
28 Aug 2019
Finite size corrections for neural network Gaussian processes
J. Antognini
BDL
89
31
0
27 Aug 2019
Effect of Activation Functions on the Training of Overparametrized Neural Nets
A. Panigrahi
Abhishek Shetty
Navin Goyal
92
21
0
16 Aug 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
197
640
0
14 Aug 2019
A Fine-Grained Spectral Perspective on Neural Networks
Greg Yang
Hadi Salman
144
113
0
24 Jul 2019
Mitigating Uncertainty in Document Classification
Xuchao Zhang
Fanglan Chen
Chang-Tien Lu
Naren Ramakrishnan
64
43
0
17 Jul 2019
Sequential online prediction in the presence of outliers and change points: an instant temporal structure learning approach
Bin Liu
Yu Qi
Ke-Jia Chen
AI4TS
43
11
0
15 Jul 2019
Order and Chaos: NTK views on DNN Normalization, Checkerboard and Boundary Artifacts
Arthur Jacot
Franck Gabriel
François Ged
Clément Hongler
79
24
0
11 Jul 2019
Ín-Between' Uncertainty in Bayesian Neural Networks
Andrew Y. K. Foong
Yingzhen Li
José Miguel Hernández-Lobato
Richard Turner
BDL
UQCV
80
121
0
27 Jun 2019
Model Bridging: Connection between Simulation Model and Neural Network
Keiichi Kisamori
Keisuke Yamazaki
Yuto Komori
Hiroshi Tokieda
74
1
0
22 Jun 2019
Disentangling feature and lazy training in deep neural networks
Mario Geiger
S. Spigler
Arthur Jacot
Matthieu Wyart
141
17
0
19 Jun 2019
Learning Curves for Deep Neural Networks: A Gaussian Field Theory Perspective
Omry Cohen
Orit Malka
Zohar Ringel
AI4CE
89
22
0
12 Jun 2019
The Normalization Method for Alleviating Pathological Sharpness in Wide Neural Networks
Ryo Karakida
S. Akaho
S. Amari
75
41
0
07 Jun 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCV
BDL
142
125
0
05 Jun 2019
Deep ReLU Networks Have Surprisingly Few Activation Patterns
Boris Hanin
David Rolnick
138
229
0
03 Jun 2019
A Mean Field Theory of Quantized Deep Networks: The Quantization-Depth Trade-Off
Yaniv Blumenfeld
D. Gilboa
Daniel Soudry
MQ
91
14
0
03 Jun 2019
Quantifying Point-Prediction Uncertainty in Neural Networks via Residual Estimation with an I/O Kernel
Xin Qiu
Elliot Meyerson
Risto Miikkulainen
UQCV
118
54
0
03 Jun 2019
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
148
260
0
29 May 2019
Implicit Rugosity Regularization via Data Augmentation
Daniel LeJeune
Randall Balestriero
Hamid Javadi
Richard G. Baraniuk
83
4
0
28 May 2019
Infinitely deep neural networks as diffusion processes
Stefano Peluchetti
Stefano Favaro
ODL
105
32
0
27 May 2019
Scalable Training of Inference Networks for Gaussian-Process Models
Jiaxin Shi
Mohammad Emtiyaz Khan
Jun Zhu
BDL
67
18
0
27 May 2019
Interpretable deep Gaussian processes with moments
Chi-Ken Lu
Scott Cheng-Hsin Yang
Xiaoran Hao
Patrick Shafto
91
19
0
27 May 2019
Learning spectrograms with convolutional spectral kernels
Zheyan Shen
Markus Heinonen
Samuel Kaski
64
9
0
23 May 2019
Expressive Priors in Bayesian Neural Networks: Kernel Combinations and Periodic Functions
Tim Pearce
Russell Tsuchida
Mohamed H. Zaki
Alexandra Brintrup
A. Neely
BDL
79
50
0
15 May 2019
Sub-Weibull distributions: generalizing sub-Gaussian and sub-Exponential properties to heavier-tailed distributions
M. Vladimirova
Stéphane Girard
Hien Nguyen
Julyan Arbel
119
92
0
13 May 2019
The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study
Daniel S. Park
Jascha Narain Sohl-Dickstein
Quoc V. Le
Samuel L. Smith
107
57
0
09 May 2019
Similarity of Neural Network Representations Revisited
Simon Kornblith
Mohammad Norouzi
Honglak Lee
Geoffrey E. Hinton
196
1,442
0
01 May 2019
LS-SVR as a Bayesian RBF network
Diego Mesquita
Luis A. Freitas
Joao P. P. Gomes
C. L. C. Mattos
66
12
0
01 May 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
332
929
0
26 Apr 2019
Linear Multiple Low-Rank Kernel Based Stationary Gaussian Processes Regression for Time Series
Feng Yin
Lishuo Pan
Xinwei He
Tianshi Chen
Sergios Theodoridis
Zhi-Quan
Zhi-Quan Luo
AI4TS
55
26
0
21 Apr 2019
A Bayesian Perspective on the Deep Image Prior
Zezhou Cheng
Matheus Gadelha
Subhransu Maji
Daniel Sheldon
BDL
UQCV
81
137
0
16 Apr 2019
Nearest-Neighbor Neural Networks for Geostatistics
Haoyu Wang
Yawen Guan
Brian J. Reich
BDL
57
16
0
28 Mar 2019
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
96
240
0
14 Mar 2019
Implicit Regularization in Over-parameterized Neural Networks
M. Kubo
Ryotaro Banno
Hidetaka Manabe
Masataka Minoji
90
23
0
05 Mar 2019
Deeper Connections between Neural Networks and Gaussian Processes Speed-up Active Learning
Evgenii Tsymbalov
Sergei Makarychev
Alexander Shapeev
Maxim Panov
BDL
UQCV
52
21
0
27 Feb 2019
Function Space Particle Optimization for Bayesian Neural Networks
Ziyu Wang
Zhaolin Ren
Jun Zhu
Bo Zhang
BDL
77
65
0
26 Feb 2019
A Mean Field Theory of Batch Normalization
Greg Yang
Jeffrey Pennington
Vinay Rao
Jascha Narain Sohl-Dickstein
S. Schoenholz
104
180
0
21 Feb 2019
On the Impact of the Activation Function on Deep Neural Networks Training
Soufiane Hayou
Arnaud Doucet
Judith Rousseau
ODL
81
201
0
19 Feb 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
250
1,112
0
18 Feb 2019
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Vincent Dutordoir
Mark van der Wilk
A. Artemev
J. Hensman
UQCV
BDL
161
32
0
15 Feb 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
243
289
0
13 Feb 2019
Mean Field Limit of the Learning Dynamics of Multilayer Neural Networks
Phan-Minh Nguyen
AI4CE
97
72
0
07 Feb 2019
The role of a layer in deep neural networks: a Gaussian Process perspective
Oded Ben-David
Zohar Ringel
AI4CE
44
3
0
06 Feb 2019
Previous
1
2
3
...
12
13
14
Next