ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03922
40
27

The Eigenlearning Framework: A Conservation Law Perspective on Kernel Regression and Wide Neural Networks

8 October 2021
James B. Simon
Madeline Dickens
Dhruva Karkada
M. DeWeese
ArXivPDFHTML
Abstract

We derive simple closed-form estimates for the test risk and other generalization metrics of kernel ridge regression (KRR). Relative to prior work, our derivations are greatly simplified and our final expressions are more readily interpreted. These improvements are enabled by our identification of a sharp conservation law which limits the ability of KRR to learn any orthonormal basis of functions. Test risk and other objects of interest are expressed transparently in terms of our conserved quantity evaluated in the kernel eigenbasis. We use our improved framework to: i) provide a theoretical explanation for the "deep bootstrap" of Nakkiran et al (2020), ii) generalize a previous result regarding the hardness of the classic parity problem, iii) fashion a theoretical tool for the study of adversarial robustness, and iv) draw a tight analogy between KRR and a well-studied system in statistical physics.

View on arXiv
Comments on this paper