Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00165
Cited By
v1
v2
v3 (latest)
Deep Neural Networks as Gaussian Processes
1 November 2017
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Neural Networks as Gaussian Processes"
50 / 696 papers shown
Title
Investigating Generalization by Controlling Normalized Margin
Alexander R. Farhang
Jeremy Bernstein
Kushal Tirumala
Yang Liu
Yisong Yue
90
6
0
08 May 2022
Variational Inference for Nonlinear Inverse Problems via Neural Net Kernels: Comparison to Bayesian Neural Networks, Application to Topology Optimization
Vahid Keshavarzzadeh
Robert M. Kirby
A. Narayan
BDL
69
2
0
07 May 2022
NeuralEF: Deconstructing Kernels by Deep Neural Networks
Zhijie Deng
Jiaxin Shi
Jun Zhu
158
19
0
30 Apr 2022
Deep Ensemble as a Gaussian Process Approximate Posterior
Zhijie Deng
Feng Zhou
Jianfei Chen
Guoqiang Wu
Jun Zhu
UQCV
58
5
0
30 Apr 2022
Convergence of neural networks to Gaussian mixture distribution
Yasuhiko Asao
Ryotaro Sakamoto
S. Takagi
BDL
75
2
0
26 Apr 2022
On Feature Learning in Neural Networks with Global Convergence Guarantees
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
96
13
0
22 Apr 2022
Towards a Unified Framework for Uncertainty-aware Nonlinear Variable Selection with Theoretical Guarantees
Wenying Deng
Beau Coker
Rajarshi Mukherjee
J. Liu
B. Coull
65
2
0
15 Apr 2022
Single-level Adversarial Data Synthesis based on Neural Tangent Kernels
Yu-Rong Zhang
Ruei-Yang Su
Sheng-Yen Chou
Shan Wu
GAN
151
2
0
08 Apr 2022
Analytic theory for the dynamics of wide quantum neural networks
Junyu Liu
K. Najafi
Kunal Sharma
F. Tacchino
Liang Jiang
Antonio Mezzacapo
92
53
0
30 Mar 2022
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
112
13
0
22 Mar 2022
Origami in N dimensions: How feed-forward networks manufacture linear separability
Christian Keup
M. Helias
81
8
0
21 Mar 2022
A Framework and Benchmark for Deep Batch Active Learning for Regression
David Holzmüller
Viktor Zaverkin
Johannes Kastner
Ingo Steinwart
UQCV
BDL
GP
145
37
0
17 Mar 2022
Scalable marginalization of correlated latent variables with applications to learning particle interaction kernels
Mengyang Gu
Xubo Liu
X. Fang
Sui Tang
69
8
0
16 Mar 2022
On Connecting Deep Trigonometric Networks with Deep Gaussian Processes: Covariance, Expressivity, and Neural Tangent Kernel
Chi-Ken Lu
Patrick Shafto
BDL
101
0
0
14 Mar 2022
Quantitative Gaussian Approximation of Randomly Initialized Deep Neural Networks
Andrea Basteri
Dario Trevisan
BDL
82
21
0
14 Mar 2022
Deep Regression Ensembles
Antoine Didisheim
Bryan Kelly
Semyon Malamud
UQCV
61
4
0
10 Mar 2022
Revealing the Excitation Causality between Climate and Political Violence via a Neural Forward-Intensity Poisson Process
S. Sun
Bailu Jin
Zhuangkun Wei
Weisi Guo
56
3
0
09 Mar 2022
Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer
Greg Yang
J. E. Hu
Igor Babuschkin
Szymon Sidor
Xiaodong Liu
David Farhi
Nick Ryder
J. Pachocki
Weizhu Chen
Jianfeng Gao
158
168
0
07 Mar 2022
Generalization Through The Lens Of Leave-One-Out Error
Gregor Bachmann
Thomas Hofmann
Aurelien Lucchi
142
8
0
07 Mar 2022
An Analysis of Ensemble Sampling
Chao Qin
Zheng Wen
Xiuyuan Lu
Benjamin Van Roy
135
22
0
02 Mar 2022
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
Cengiz Pehlevan
BDL
MLT
139
28
0
01 Mar 2022
Explicitising The Implicit Intrepretability of Deep Neural Networks Via Duality
Chandrashekar Lakshminarayanan
Ashutosh Kumar Singh
A. Rajkumar
AI4CE
82
1
0
01 Mar 2022
Embedded Ensembles: Infinite Width Limit and Operating Regimes
Maksim Velikanov
Roma Kail
Ivan Anokhin
Roman Vashurin
Maxim Panov
Alexey Zaytsev
Dmitry Yarotsky
56
1
0
24 Feb 2022
A duality connecting neural network and cosmological dynamics
Sven Krippendorf
M. Spannowsky
AI4CE
83
8
0
22 Feb 2022
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography
Francisca Vasconcelos
Bobby He
Nalini Singh
Yee Whye Teh
BDL
OOD
UQCV
84
13
0
22 Feb 2022
Learning from Randomly Initialized Neural Network Features
Ehsan Amid
Rohan Anil
W. Kotłowski
Manfred K. Warmuth
MLT
85
15
0
13 Feb 2022
Decomposing neural networks as mappings of correlation functions
Kirsten Fischer
Alexandre René
Christian Keup
Moritz Layer
David Dahmen
M. Helias
FAtt
107
15
0
10 Feb 2022
Multi-model Ensemble Analysis with Neural Network Gaussian Processes
Trevor Harris
Yangqiu Song
Ryan Sriver
137
5
0
08 Feb 2022
Lossy Gradient Compression: How Much Accuracy Can One Bit Buy?
Sadaf Salehkalaibar
Stefano Rini
FedML
68
4
0
06 Feb 2022
Learning Representation from Neural Fisher Kernel with Low-rank Approximation
Ruixiang Zhang
Shuangfei Zhai
Etai Littwin
J. Susskind
SSL
92
3
0
04 Feb 2022
Deep Layer-wise Networks Have Closed-Form Weights
Chieh-Tsai Wu
A. Masoomi
Arthur Gretton
Jennifer Dy
71
3
0
01 Feb 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
105
3
0
30 Jan 2022
How does unlabeled data improve generalization in self-training? A one-hidden-layer theoretical analysis
Shuai Zhang
Ming Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
SSL
MLT
124
23
0
21 Jan 2022
Kernel Methods and Multi-layer Perceptrons Learn Linear Models in High Dimensions
Mojtaba Sahraee-Ardakan
M. Emami
Parthe Pandit
S. Rangan
A. Fletcher
109
9
0
20 Jan 2022
Adaptive Transfer Learning for Plant Phenotyping
Jun Wu
Elizabeth Ainsworth
Sheng Wang
K. Guan
Jingrui He
13
2
0
14 Jan 2022
On neural network kernels and the storage capacity problem
Jacob A. Zavatone-Veth
Cengiz Pehlevan
63
6
0
12 Jan 2022
Complexity from Adaptive-Symmetries Breaking: Global Minima in the Statistical Mechanics of Deep Neural Networks
Shaun Li
AI4CE
84
0
0
03 Jan 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Zohar Ringel
113
55
0
31 Dec 2021
NN2Poly: A polynomial representation for deep feed-forward artificial neural networks
Pablo Morala
Jenny Alexandra Cifuentes
R. Lillo
Iñaki Ucar
113
7
0
21 Dec 2021
Revisiting Memory Efficient Kernel Approximation: An Indefinite Learning Perspective
Simon Heilig
Maximilian Münch
Frank-Michael Schleif
45
1
0
18 Dec 2021
Posterior contraction rates for constrained deep Gaussian processes in density estimation and classication
François Bachoc
A. Lagnoux
89
4
0
14 Dec 2021
Eigenspace Restructuring: a Principle of Space and Frequency in Neural Networks
Lechao Xiao
118
22
0
10 Dec 2021
Faster Single-loop Algorithms for Minimax Optimization without Strong Concavity
Junchi Yang
Antonio Orvieto
Aurelien Lucchi
Niao He
117
64
0
10 Dec 2021
Provable Continual Learning via Sketched Jacobian Approximations
Reinhard Heckel
CLL
87
10
0
09 Dec 2021
Infinite Neural Network Quantum States: Entanglement and Training Dynamics
Di Luo
James Halverson
79
6
0
01 Dec 2021
Dependence between Bayesian neural network units
M. Vladimirova
Julyan Arbel
Stéphane Girard
BDL
110
3
0
29 Nov 2021
Impact of classification difficulty on the weight matrices spectra in Deep Learning and application to early-stopping
Xuran Meng
Jianfeng Yao
98
7
0
26 Nov 2021
Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications
Darshil Doshi
Tianyu He
Andrey Gromov
95
10
0
23 Nov 2021
Depth induces scale-averaging in overparameterized linear Bayesian neural networks
Jacob A. Zavatone-Veth
Cengiz Pehlevan
BDL
UQCV
MDE
106
11
0
23 Nov 2021
On the Equivalence between Neural Network and Support Vector Machine
Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
AAML
93
18
0
11 Nov 2021
Previous
1
2
3
...
6
7
8
...
12
13
14
Next