ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.09710
39
50

Understanding neural networks with reproducing kernel Banach spaces

20 September 2021
Francesca Bartolucci
E. De Vito
Lorenzo Rosasco
S. Vigogna
ArXivPDFHTML
Abstract

Characterizing the function spaces corresponding to neural networks can provide a way to understand their properties. In this paper we discuss how the theory of reproducing kernel Banach spaces can be used to tackle this challenge. In particular, we prove a representer theorem for a wide class of reproducing kernel Banach spaces that admit a suitable integral representation and include one hidden layer neural networks of possibly infinite width. Further, we show that, for a suitable class of ReLU activation functions, the norm in the corresponding reproducing kernel Banach space can be characterized in terms of the inverse Radon transform of a bounded real measure, with norm given by the total variation norm of the measure. Our analysis simplifies and extends recent results in [34,29,30].

View on arXiv
Comments on this paper