Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00165
Cited By
Deep Neural Networks as Gaussian Processes
1 November 2017
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Neural Networks as Gaussian Processes"
42 / 692 papers shown
Title
The Limitations of Model Uncertainty in Adversarial Settings
Kathrin Grosse
David Pfaff
M. Smith
Michael Backes
AAML
25
34
0
06 Dec 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
44
1,126
0
09 Nov 2018
Characterizing Well-Behaved vs. Pathological Deep Neural Networks
Mitchell Stern
21
0
0
07 Nov 2018
A Batched Scalable Multi-Objective Bayesian Optimization Algorithm
Xi Lin
Hui-Ling Zhen
Zhenhua Li
Qingfu Zhang
Sam Kwong
22
11
0
04 Nov 2018
On the Convergence Rate of Training Recurrent Neural Networks
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
34
191
0
29 Oct 2018
A Gaussian Process perspective on Convolutional Neural Networks
Anastasia Borovykh
22
19
0
25 Oct 2018
A Modern Take on the Bias-Variance Tradeoff in Neural Networks
Brady Neal
Sarthak Mittal
A. Baratin
Vinayak Tantia
Matthew Scicluna
Simon Lacoste-Julien
Ioannis Mitliagkas
37
167
0
19 Oct 2018
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
Jason D. Lee
Qiang Liu
Tengyu Ma
31
245
0
12 Oct 2018
Understanding Priors in Bayesian Neural Networks at the Unit Level
M. Vladimirova
Jakob Verbeek
Pablo Mesejo
Julyan Arbel
BDL
UQCV
19
4
0
11 Oct 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
25
307
0
11 Oct 2018
Deterministic Variational Inference for Robust Bayesian Neural Networks
Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
UQCV
AAML
BDL
34
16
0
09 Oct 2018
Information Geometry of Orthogonal Initializations and Training
Piotr A. Sokól
Il-Su Park
AI4CE
85
16
0
09 Oct 2018
Deep convolutional Gaussian processes
Kenneth Blomqvist
Samuel Kaski
Markus Heinonen
BDL
33
60
0
06 Oct 2018
Generalization Properties of hyper-RKHS and its Applications
Fanghui Liu
Lei Shi
Xiaolin Huang
Jie Yang
Johan A. K. Suykens
29
4
0
26 Sep 2018
Robustness Guarantees for Bayesian Inference with Gaussian Processes
L. Cardelli
Marta Kwiatkowska
Luca Laurenti
A. Patané
AAML
24
52
0
17 Sep 2018
Deep Convolutional Networks as shallow Gaussian Processes
Adrià Garriga-Alonso
C. Rasmussen
Laurence Aitchison
BDL
UQCV
35
268
0
16 Aug 2018
Noise Contrastive Priors for Functional Uncertainty
Danijar Hafner
Dustin Tran
Timothy Lillicrap
A. Irpan
James Davidson
AAML
BDL
UQCV
35
74
0
24 Jul 2018
EnsembleDAgger: A Bayesian Approach to Safe Imitation Learning
Kunal Menda
Katherine Driggs-Campbell
Mykel J. Kochenderfer
19
117
0
22 Jul 2018
Phase Retrieval Under a Generative Prior
Paul Hand
Oscar Leong
V. Voroninski
11
188
0
11 Jul 2018
Bayesian Deep Learning on a Quantum Computer
Zhikuan Zhao
Alejandro Pozas-Kerstjens
Patrick Rebentrost
P. Wittek
UQCV
BDL
28
69
0
29 Jun 2018
Adversarial Reprogramming of Neural Networks
Gamaleldin F. Elsayed
Ian Goodfellow
Jascha Narain Sohl-Dickstein
OOD
AAML
16
178
0
28 Jun 2018
Neural-net-induced Gaussian process regression for function approximation and PDE solution
G. Pang
Liu Yang
George Karniadakis
14
73
0
22 Jun 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
72
3,126
0
20 Jun 2018
Insights on representational similarity in neural networks with canonical correlation
Ari S. Morcos
M. Raghu
Samy Bengio
DRL
32
434
0
14 Jun 2018
Dynamical Isometry and a Mean Field Theory of RNNs: Gating Enables Signal Propagation in Recurrent Neural Networks
Minmin Chen
Jeffrey Pennington
S. Schoenholz
SyDa
AI4CE
24
115
0
14 Jun 2018
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
24
68
0
06 Jun 2018
Killing four birds with one Gaussian process: the relation between different test-time attacks
Kathrin Grosse
M. Smith
Michael Backes
AAML
26
2
0
06 Jun 2018
Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach
Ryo Karakida
S. Akaho
S. Amari
FedML
47
140
0
04 Jun 2018
Interpreting Deep Learning: The Machine Learning Rorschach Test?
Adam S. Charles
AAML
HAI
AI4CE
27
9
0
01 Jun 2018
Deep learning generalizes because the parameter-function map is biased towards simple functions
Guillermo Valle Pérez
Chico Q. Camargo
A. Louis
MLT
AI4CE
18
226
0
22 May 2018
On the Selection of Initialization and Activation Function for Deep Neural Networks
Soufiane Hayou
Arnaud Doucet
Judith Rousseau
ODL
24
75
0
21 May 2018
Real-time regression analysis with deep convolutional neural networks
Eliu A. Huerta
D. George
Zhizhen Zhao
Gabrielle Allen
32
4
0
07 May 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
88
550
0
30 Apr 2018
Gradient descent in Gaussian random fields as a toy model for high-dimensional optimisation in deep learning
Mariano Chouza
Stephen J. Roberts
S. Zohren
11
2
0
24 Mar 2018
Sensitivity and Generalization in Neural Networks: an Empirical Study
Roman Novak
Yasaman Bahri
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
AAML
27
437
0
23 Feb 2018
Algorithmic Linearly Constrained Gaussian Processes
Markus Lange-Hegermann
31
34
0
28 Jan 2018
Invariance of Weight Distributions in Rectified MLPs
Russell Tsuchida
Farbod Roosta-Khorasani
M. Gallagher
MLT
32
35
0
24 Nov 2017
How Wrong Am I? - Studying Adversarial Examples and their Impact on Uncertainty in Gaussian Process Machine Learning Models
Kathrin Grosse
David Pfaff
M. Smith
Michael Backes
AAML
25
9
0
17 Nov 2017
Spatial Mapping with Gaussian Processes and Nonstationary Fourier Features
Jean-François Ton
Seth Flaxman
Dino Sejdinovic
Samir Bhatt
GP
38
52
0
15 Nov 2017
Deep Learning: A Bayesian Perspective
Nicholas G. Polson
Vadim Sokolov
BDL
54
115
0
01 Jun 2017
Quantifying the probable approximation error of probabilistic inference programs
Marco F. Cusumano-Towner
Vikash K. Mansinghka
33
7
0
31 May 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
289
9,167
0
06 Jun 2015
Previous
1
2
3
...
12
13
14