Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00165
Cited By
v1
v2
v3 (latest)
Deep Neural Networks as Gaussian Processes
1 November 2017
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Neural Networks as Gaussian Processes"
50 / 696 papers shown
Title
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel Machines
Edward Milsom
Ben Anson
Laurence Aitchison
65
0
0
08 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
143
0
0
08 Oct 2024
Strong Model Collapse
Elvis Dohmatob
Yunzhen Feng
Arjun Subramonian
Julia Kempe
92
15
0
07 Oct 2024
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Jorge Loría
A. Bhadra
BDL
UQCV
161
0
0
02 Oct 2024
Functional Stochastic Gradient MCMC for Bayesian Neural Networks
Mengjing Wu
Junyu Xuan
Jie Lu
BDL
86
0
0
25 Sep 2024
BGDB: Bernoulli-Gaussian Decision Block with Improved Denoising Diffusion Probabilistic Models
Chengkun Sun
Jinqian Pan
Russell Stevens Terry
Jiang Bian
Jie Xu
DiffM
65
1
0
19 Sep 2024
Rate-Constrained Quantization for Communication-Efficient Federated Learning
Shayan Mohajer Hamidi
Ali Bereyhi
FedML
MQ
60
1
0
10 Sep 2024
NASH: Neural Architecture and Accelerator Search for Multiplication-Reduced Hybrid Models
Yang Xu
Huihong Shi
Zhongfeng Wang
85
0
0
07 Sep 2024
Function-Space MCMC for Bayesian Wide Neural Networks
Lucia Pezzetti
Stefano Favaro
Stefano Peluchetti
BDL
469
0
0
26 Aug 2024
DKL-KAN: Scalable Deep Kernel Learning using Kolmogorov-Arnold Networks
Shrenik Zinage
Sudeepta Mondal
S. Sarkar
112
7
0
30 Jul 2024
Finite Neural Networks as Mixtures of Gaussian Processes: From Provable Error Bounds to Prior Selection
Steven Adams
A. Patané
Morteza Lahijanian
Luca Laurenti
BDL
98
3
0
26 Jul 2024
Gaussian Process Kolmogorov-Arnold Networks
Andrew Siyuan Chen
71
0
0
25 Jul 2024
Parameter-Efficient Fine-Tuning for Continual Learning: A Neural Tangent Kernel Perspective
Jingren Liu
Zhong Ji
YunLong Yu
Jiale Cao
Yanwei Pang
Jungong Han
Xuelong Li
CLL
152
5
0
24 Jul 2024
Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing
Biswadeep Chakraborty
Saibal Mukhopadhyay
99
2
0
08 Jul 2024
Neural varifolds: an aggregate representation for quantifying the geometry of point clouds
Juheon Lee
Xiaohao Cai
Carola-Bibian Schönlieb
Simon Masnou
3DPC
93
1
0
05 Jul 2024
Coding schemes in neural networks learning classification tasks
Alexander van Meegen
H. Sompolinsky
98
10
0
24 Jun 2024
Equivariant Neural Tangent Kernels
Philipp Misof
Pan Kessel
Jan E. Gerken
225
0
0
10 Jun 2024
Crafting Heavy-Tails in Weight Matrix Spectrum without Gradient Noise
Vignesh Kothapalli
Tianyu Pang
Shenyang Deng
Zongmin Liu
Yaoqing Yang
92
4
0
07 Jun 2024
PRICE: A Pretrained Model for Cross-Database Cardinality Estimation
Tian Zeng
Junwei Lan
Jiahong Ma
Wenqing Wei
Rong Zhu
Pengfei Li
Bolin Ding
Defu Lian
Zhewei Wei
Jingren Zhou
83
5
0
03 Jun 2024
Understanding and Minimising Outlier Features in Neural Network Training
Bobby He
Lorenzo Noci
Daniele Paliotta
Imanol Schlag
Thomas Hofmann
105
4
0
29 May 2024
Deep Feature Gaussian Processes for Single-Scene Aerosol Optical Depth Reconstruction
Shengjie Liu
Lu Zhang
34
2
0
27 May 2024
Large Deviations of Gaussian Neural Networks with ReLU activation
Quirin Vogel
55
1
0
27 May 2024
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
140
2
0
27 May 2024
Dissecting the Interplay of Attention Paths in a Statistical Mechanics Theory of Transformers
Lorenzo Tiberi
Francesca Mignacco
Kazuki Irie
H. Sompolinsky
107
7
0
24 May 2024
SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning
Shuai Zhang
Heshan Devaka Fernando
Miao Liu
K. Murugesan
Songtao Lu
Pin-Yu Chen
Tianyi Chen
Meng Wang
84
2
0
24 May 2024
Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime
A. Shilton
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
66
0
0
24 May 2024
Scalable Optimization in the Modular Norm
Tim Large
Yang Liu
Minyoung Huh
Hyojin Bahng
Phillip Isola
Jeremy Bernstein
92
16
0
23 May 2024
Conformal Counterfactual Inference under Hidden Confounding
Zonghao Chen
Ruocheng Guo
Jean-François Ton
Yang Liu
CML
OffRL
229
3
0
20 May 2024
A Method on Searching Better Activation Functions
Haoyuan Sun
Zihao Wu
Bo Xia
Pu Chang
Zibin Dong
Yifu Yuan
Yongzhe Chang
Xueqian Wang
75
3
0
19 May 2024
Random ReLU Neural Networks as Non-Gaussian Processes
Rahul Parhi
Pakshal Bohra
Ayoub El Biari
Mehrsa Pourya
Michael Unser
131
1
0
16 May 2024
Restoring balance: principled under/oversampling of data for optimal classification
Emanuele Loffredo
Mauro Pastore
Simona Cocco
R. Monasson
117
9
0
15 May 2024
Spectral complexity of deep neural networks
Simmaco Di Lillo
Domenico Marinucci
Michele Salvi
Stefano Vigogna
BDL
180
2
0
15 May 2024
Wilsonian Renormalization of Neural Network Gaussian Processes
Jessica N. Howard
Ro Jefferson
Anindita Maiti
Zohar Ringel
BDL
182
3
0
09 May 2024
Multi-layer random features and the approximation power of neural networks
Rustem Takhanov
69
1
0
26 Apr 2024
The Positivity of the Neural Tangent Kernel
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
104
3
0
19 Apr 2024
BayesJudge: Bayesian Kernel Language Modelling with Confidence Uncertainty in Legal Judgment Prediction
Ubaid Azam
Imran Razzak
Shelly Vishwakarma
Hakim Hacid
Dell Zhang
Shoaib Jameel
UQCV
ELM
BDL
77
0
0
16 Apr 2024
Log-PDE Methods for Rough Signature Kernels
M. Lemercier
Terry Lyons
C. Salvi
205
2
0
01 Apr 2024
Bayesian Exploration of Pre-trained Models for Low-shot Image Classification
Yibo Miao
Yu Lei
Feng Zhou
Zhijie Deng
VLM
UQCV
BDL
109
3
0
30 Mar 2024
Tensor Network-Constrained Kernel Machines as Gaussian Processes
Frederiek Wesel
Kim Batselier
144
0
0
28 Mar 2024
A Unified Kernel for Neural Network Learning
Shao-Qun Zhang
Zong-Yi Chen
Yong-Ming Tian
Xun Lu
95
1
0
26 Mar 2024
Approximation with Random Shallow ReLU Networks with Applications to Model Reference Adaptive Control
Andrew G. Lamperski
Tyler Lekang
76
3
0
25 Mar 2024
Improving Forward Compatibility in Class Incremental Learning by Increasing Representation Rank and Feature Richness
Jaeill Kim
Wonseok Lee
Moonjung Eo
Wonjong Rhee
CLL
123
0
0
22 Mar 2024
Topological Representations of Heterogeneous Learning Dynamics of Recurrent Spiking Neural Networks
Biswadeep Chakraborty
Saibal Mukhopadhyay
90
3
0
19 Mar 2024
Neural network representation of quantum systems
Koji Hashimoto
Yuji Hirono
Jun Maeda
Jojiro Totsuka-Yoshinaka
87
2
0
18 Mar 2024
Reconstructing Blood Flow in Data-Poor Regimes: A Vasculature Network Kernel for Gaussian Process Regression
S. Z. Ashtiani
Mohammad Sarabian
K. Laksari
H. Babaee
59
4
0
14 Mar 2024
Transformers Learn Low Sensitivity Functions: Investigations and Implications
Bhavya Vasudeva
Deqing Fu
Tianyi Zhou
Elliott Kau
Youqi Huang
Vatsal Sharan
118
2
0
11 Mar 2024
Density-Regression: Efficient and Distance-Aware Deep Regressor for Uncertainty Estimation under Distribution Shifts
H. Bui
Anqi Liu
OOD
BDL
UQCV
195
4
0
07 Mar 2024
GNN-VPA: A Variance-Preserving Aggregation Strategy for Graph Neural Networks
Lisa Schneckenreiter
Richard Freinschlag
Florian Sestak
Johannes Brandstetter
Günter Klambauer
Andreas Mayr
117
5
0
07 Mar 2024
Sparse Spiking Neural Network: Exploiting Heterogeneity in Timescales for Pruning Recurrent SNN
Biswadeep Chakraborty
Beomseok Kang
H. Kumar
Saibal Mukhopadhyay
131
11
0
06 Mar 2024
Emergent Equivariance in Deep Ensembles
Jan E. Gerken
Pan Kessel
UQCV
MDE
106
8
0
05 Mar 2024
Previous
1
2
3
4
5
...
12
13
14
Next