Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00165
Cited By
Deep Neural Networks as Gaussian Processes
1 November 2017
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Neural Networks as Gaussian Processes"
50 / 690 papers shown
Title
Enhanced BPINN Training Convergence in Solving General and Multi-scale Elliptic PDEs with Noise
Yilong Hou
Xi’an Li
Jinran Wu
You-Gan Wang
69
1
0
18 Aug 2024
DKL-KAN: Scalable Deep Kernel Learning using Kolmogorov-Arnold Networks
Shrenik Zinage
Sudeepta Mondal
S. Sarkar
46
6
0
30 Jul 2024
Finite Neural Networks as Mixtures of Gaussian Processes: From Provable Error Bounds to Prior Selection
Steven Adams
A. Patané
Morteza Lahijanian
Luca Laurenti
BDL
36
2
0
26 Jul 2024
Gaussian Process Kolmogorov-Arnold Networks
Andrew Siyuan Chen
29
0
0
25 Jul 2024
Parameter-Efficient Fine-Tuning for Continual Learning: A Neural Tangent Kernel Perspective
Jingren Liu
Zhong Ji
YunLong Yu
Jiale Cao
Yanwei Pang
Jungong Han
Xuelong Li
CLL
44
5
0
24 Jul 2024
Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing
Biswadeep Chakraborty
Saibal Mukhopadhyay
38
2
0
08 Jul 2024
Neural varifolds: an aggregate representation for quantifying the geometry of point clouds
Juheon Lee
Xiaohao Cai
Carola-Bibian Schönlieb
Simon Masnou
3DPC
52
0
0
05 Jul 2024
Coding schemes in neural networks learning classification tasks
Alexander van Meegen
H. Sompolinsky
44
6
0
24 Jun 2024
Equivariant Neural Tangent Kernels
Philipp Misof
Pan Kessel
Jan E. Gerken
64
0
0
10 Jun 2024
Crafting Heavy-Tails in Weight Matrix Spectrum without Gradient Noise
Vignesh Kothapalli
Tianyu Pang
Shenyang Deng
Zongmin Liu
Yaoqing Yang
45
3
0
07 Jun 2024
PRICE: A Pretrained Model for Cross-Database Cardinality Estimation
Tian Zeng
Junwei Lan
Jiahong Ma
Wenqing Wei
Rong Zhu
Pengfei Li
Bolin Ding
Defu Lian
Zhewei Wei
Jingren Zhou
33
5
0
03 Jun 2024
Understanding and Minimising Outlier Features in Neural Network Training
Bobby He
Lorenzo Noci
Daniele Paliotta
Imanol Schlag
Thomas Hofmann
47
3
0
29 May 2024
Deep Feature Gaussian Processes for Single-Scene Aerosol Optical Depth Reconstruction
Shengjie Liu
Lu Zhang
22
2
0
27 May 2024
Large Deviations of Gaussian Neural Networks with ReLU activation
Quirin Vogel
36
1
0
27 May 2024
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
68
1
0
27 May 2024
Dissecting the Interplay of Attention Paths in a Statistical Mechanics Theory of Transformers
Lorenzo Tiberi
Francesca Mignacco
Kazuki Irie
H. Sompolinsky
46
6
0
24 May 2024
SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning
Shuai Zhang
Heshan Devaka Fernando
Miao Liu
K. Murugesan
Songtao Lu
Pin-Yu Chen
Tianyi Chen
Meng Wang
54
1
0
24 May 2024
Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime
A. Shilton
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
34
0
0
24 May 2024
Scalable Optimization in the Modular Norm
Tim Large
Yang Liu
Minyoung Huh
Hyojin Bahng
Phillip Isola
Jeremy Bernstein
54
12
0
23 May 2024
Conformal Counterfactual Inference under Hidden Confounding
Zonghao Chen
Ruocheng Guo
Jean-François Ton
Yang Liu
CML
OffRL
53
2
0
20 May 2024
A Method on Searching Better Activation Functions
Haoyuan Sun
Zihao Wu
Bo Xia
Pu Chang
Zibin Dong
Yifu Yuan
Yongzhe Chang
Xueqian Wang
17
3
0
19 May 2024
Random ReLU Neural Networks as Non-Gaussian Processes
Rahul Parhi
Pakshal Bohra
Ayoub El Biari
Mehrsa Pourya
Michael Unser
63
1
0
16 May 2024
Restoring balance: principled under/oversampling of data for optimal classification
Emanuele Loffredo
Mauro Pastore
Simona Cocco
R. Monasson
48
9
0
15 May 2024
Spectral complexity of deep neural networks
Simmaco Di Lillo
Domenico Marinucci
Michele Salvi
Stefano Vigogna
BDL
82
1
0
15 May 2024
Wilsonian Renormalization of Neural Network Gaussian Processes
Jessica N. Howard
Ro Jefferson
Anindita Maiti
Zohar Ringel
BDL
85
3
0
09 May 2024
Multi-layer random features and the approximation power of neural networks
Rustem Takhanov
34
1
0
26 Apr 2024
The Positivity of the Neural Tangent Kernel
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
48
1
0
19 Apr 2024
BayesJudge: Bayesian Kernel Language Modelling with Confidence Uncertainty in Legal Judgment Prediction
Ubaid Azam
Imran Razzak
Shelly Vishwakarma
Hakim Hacid
Dell Zhang
Shoaib Jameel
UQCV
ELM
BDL
39
0
0
16 Apr 2024
A High Order Solver for Signature Kernels
M. Lemercier
Terry Lyons
31
3
0
01 Apr 2024
Bayesian Exploration of Pre-trained Models for Low-shot Image Classification
Yibo Miao
Yu Lei
Feng Zhou
Zhijie Deng
VLM
UQCV
BDL
51
2
0
30 Mar 2024
Tensor Network-Constrained Kernel Machines as Gaussian Processes
Frederiek Wesel
Kim Batselier
30
0
0
28 Mar 2024
A Unified Kernel for Neural Network Learning
Shao-Qun Zhang
Zong-Yi Chen
Yong-Ming Tian
Xun Lu
36
1
0
26 Mar 2024
Approximation with Random Shallow ReLU Networks with Applications to Model Reference Adaptive Control
Andrew G. Lamperski
Tyler Lekang
35
3
0
25 Mar 2024
Improving Forward Compatibility in Class Incremental Learning by Increasing Representation Rank and Feature Richness
Jaeill Kim
Wonseok Lee
Moonjung Eo
Wonjong Rhee
CLL
54
0
0
22 Mar 2024
Topological Representations of Heterogeneous Learning Dynamics of Recurrent Spiking Neural Networks
Biswadeep Chakraborty
Saibal Mukhopadhyay
37
3
0
19 Mar 2024
Neural network representation of quantum systems
Koji Hashimoto
Yuji Hirono
Jun Maeda
Jojiro Totsuka-Yoshinaka
41
2
0
18 Mar 2024
Reconstructing Blood Flow in Data-Poor Regimes: A Vasculature Network Kernel for Gaussian Process Regression
S. Z. Ashtiani
Mohammad Sarabian
K. Laksari
H. Babaee
34
2
0
14 Mar 2024
Transformers Learn Low Sensitivity Functions: Investigations and Implications
Bhavya Vasudeva
Deqing Fu
Tianyi Zhou
Elliott Kau
Youqi Huang
Vatsal Sharan
32
4
0
11 Mar 2024
Density-Regression: Efficient and Distance-Aware Deep Regressor for Uncertainty Estimation under Distribution Shifts
H. Bui
Anqi Liu
OOD
BDL
UQCV
49
4
0
07 Mar 2024
GNN-VPA: A Variance-Preserving Aggregation Strategy for Graph Neural Networks
Lisa Schneckenreiter
Richard Freinschlag
Florian Sestak
Johannes Brandstetter
Günter Klambauer
Andreas Mayr
46
5
0
07 Mar 2024
Sparse Spiking Neural Network: Exploiting Heterogeneity in Timescales for Pruning Recurrent SNN
Biswadeep Chakraborty
Beomseok Kang
H. Kumar
Saibal Mukhopadhyay
46
8
0
06 Mar 2024
Emergent Equivariance in Deep Ensembles
Jan E. Gerken
Pan Kessel
UQCV
MDE
43
6
0
05 Mar 2024
A prediction rigidity formalism for low-cost uncertainties in trained neural networks
Filippo Bigi
Sanggyu Chong
Michele Ceriotti
Federico Grasselli
52
5
0
04 Mar 2024
Robustness bounds on the successful adversarial examples in probabilistic models: Implications from Gaussian processes
Hiroaki Maeshima
Akira Otsuka
AAML
40
0
0
04 Mar 2024
Neural Redshift: Random Networks are not Random Functions
Damien Teney
A. Nicolicioiu
Valentin Hartmann
Ehsan Abbasnejad
103
19
0
04 Mar 2024
"Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach
Lingyu Gu
Yongqiang Du
Yuan Zhang
Di Xie
Shiliang Pu
Robert C. Qiu
Zhenyu Liao
46
6
0
01 Mar 2024
Disentangling the Causes of Plasticity Loss in Neural Networks
Clare Lyle
Zeyu Zheng
Khimya Khetarpal
H. V. Hasselt
Razvan Pascanu
James Martens
Will Dabney
AI4CE
57
32
0
29 Feb 2024
Deep Neural Network Initialization with Sparsity Inducing Activations
Ilan Price
Nicholas Daultry Ball
Samuel C.H. Lam
Adam C. Jones
Jared Tanner
AI4CE
31
1
0
25 Feb 2024
Asymptotics of Learning with Deep Structured (Random) Features
Dominik Schröder
Daniil Dmitriev
Hugo Cui
Bruno Loureiro
61
6
0
21 Feb 2024
Gaussian Process Neural Additive Models
Wei Zhang
Brian Barr
John Paisley
MedIm
BDL
19
7
0
19 Feb 2024
Previous
1
2
3
4
5
...
12
13
14
Next