ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.00165
  4. Cited By
Deep Neural Networks as Gaussian Processes
v1v2v3 (latest)

Deep Neural Networks as Gaussian Processes

1 November 2017
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Deep Neural Networks as Gaussian Processes"

50 / 696 papers shown
Title
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel
  Machines
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel Machines
Edward Milsom
Ben Anson
Laurence Aitchison
65
0
0
08 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
143
0
0
08 Oct 2024
Strong Model Collapse
Strong Model Collapse
Elvis Dohmatob
Yunzhen Feng
Arjun Subramonian
Julia Kempe
92
15
0
07 Oct 2024
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Jorge Loría
A. Bhadra
BDLUQCV
161
0
0
02 Oct 2024
Functional Stochastic Gradient MCMC for Bayesian Neural Networks
Functional Stochastic Gradient MCMC for Bayesian Neural Networks
Mengjing Wu
Junyu Xuan
Jie Lu
BDL
86
0
0
25 Sep 2024
BGDB: Bernoulli-Gaussian Decision Block with Improved Denoising
  Diffusion Probabilistic Models
BGDB: Bernoulli-Gaussian Decision Block with Improved Denoising Diffusion Probabilistic Models
Chengkun Sun
Jinqian Pan
Russell Stevens Terry
Jiang Bian
Jie Xu
DiffM
65
1
0
19 Sep 2024
Rate-Constrained Quantization for Communication-Efficient Federated
  Learning
Rate-Constrained Quantization for Communication-Efficient Federated Learning
Shayan Mohajer Hamidi
Ali Bereyhi
FedMLMQ
60
1
0
10 Sep 2024
NASH: Neural Architecture and Accelerator Search for
  Multiplication-Reduced Hybrid Models
NASH: Neural Architecture and Accelerator Search for Multiplication-Reduced Hybrid Models
Yang Xu
Huihong Shi
Zhongfeng Wang
85
0
0
07 Sep 2024
Function-Space MCMC for Bayesian Wide Neural Networks
Function-Space MCMC for Bayesian Wide Neural Networks
Lucia Pezzetti
Stefano Favaro
Stefano Peluchetti
BDL
469
0
0
26 Aug 2024
DKL-KAN: Scalable Deep Kernel Learning using Kolmogorov-Arnold Networks
DKL-KAN: Scalable Deep Kernel Learning using Kolmogorov-Arnold Networks
Shrenik Zinage
Sudeepta Mondal
S. Sarkar
112
7
0
30 Jul 2024
Finite Neural Networks as Mixtures of Gaussian Processes: From Provable
  Error Bounds to Prior Selection
Finite Neural Networks as Mixtures of Gaussian Processes: From Provable Error Bounds to Prior Selection
Steven Adams
A. Patané
Morteza Lahijanian
Luca Laurenti
BDL
98
3
0
26 Jul 2024
Gaussian Process Kolmogorov-Arnold Networks
Gaussian Process Kolmogorov-Arnold Networks
Andrew Siyuan Chen
71
0
0
25 Jul 2024
Parameter-Efficient Fine-Tuning for Continual Learning: A Neural Tangent Kernel Perspective
Parameter-Efficient Fine-Tuning for Continual Learning: A Neural Tangent Kernel Perspective
Jingren Liu
Zhong Ji
YunLong Yu
Jiale Cao
Yanwei Pang
Jungong Han
Xuelong Li
CLL
152
5
0
24 Jul 2024
Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking
  Neural Networks for Energy-Efficient Edge Computing
Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing
Biswadeep Chakraborty
Saibal Mukhopadhyay
99
2
0
08 Jul 2024
Neural varifolds: an aggregate representation for quantifying the
  geometry of point clouds
Neural varifolds: an aggregate representation for quantifying the geometry of point clouds
Juheon Lee
Xiaohao Cai
Carola-Bibian Schönlieb
Simon Masnou
3DPC
93
1
0
05 Jul 2024
Coding schemes in neural networks learning classification tasks
Coding schemes in neural networks learning classification tasks
Alexander van Meegen
H. Sompolinsky
98
10
0
24 Jun 2024
Equivariant Neural Tangent Kernels
Equivariant Neural Tangent Kernels
Philipp Misof
Pan Kessel
Jan E. Gerken
225
0
0
10 Jun 2024
Crafting Heavy-Tails in Weight Matrix Spectrum without Gradient Noise
Crafting Heavy-Tails in Weight Matrix Spectrum without Gradient Noise
Vignesh Kothapalli
Tianyu Pang
Shenyang Deng
Zongmin Liu
Yaoqing Yang
92
4
0
07 Jun 2024
PRICE: A Pretrained Model for Cross-Database Cardinality Estimation
PRICE: A Pretrained Model for Cross-Database Cardinality Estimation
Tian Zeng
Junwei Lan
Jiahong Ma
Wenqing Wei
Rong Zhu
Pengfei Li
Bolin Ding
Defu Lian
Zhewei Wei
Jingren Zhou
83
5
0
03 Jun 2024
Understanding and Minimising Outlier Features in Neural Network Training
Understanding and Minimising Outlier Features in Neural Network Training
Bobby He
Lorenzo Noci
Daniele Paliotta
Imanol Schlag
Thomas Hofmann
105
4
0
29 May 2024
Deep Feature Gaussian Processes for Single-Scene Aerosol Optical Depth
  Reconstruction
Deep Feature Gaussian Processes for Single-Scene Aerosol Optical Depth Reconstruction
Shengjie Liu
Lu Zhang
34
2
0
27 May 2024
Large Deviations of Gaussian Neural Networks with ReLU activation
Large Deviations of Gaussian Neural Networks with ReLU activation
Quirin Vogel
55
1
0
27 May 2024
Bayesian RG Flow in Neural Network Field Theories
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
140
2
0
27 May 2024
Dissecting the Interplay of Attention Paths in a Statistical Mechanics
  Theory of Transformers
Dissecting the Interplay of Attention Paths in a Statistical Mechanics Theory of Transformers
Lorenzo Tiberi
Francesca Mignacco
Kazuki Irie
H. Sompolinsky
107
7
0
24 May 2024
SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep
  Reinforcement Learning
SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning
Shuai Zhang
Heshan Devaka Fernando
Miao Liu
K. Murugesan
Songtao Lu
Pin-Yu Chen
Tianyi Chen
Meng Wang
84
2
0
24 May 2024
Novel Kernel Models and Exact Representor Theory for Neural Networks
  Beyond the Over-Parameterized Regime
Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime
A. Shilton
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
66
0
0
24 May 2024
Scalable Optimization in the Modular Norm
Scalable Optimization in the Modular Norm
Tim Large
Yang Liu
Minyoung Huh
Hyojin Bahng
Phillip Isola
Jeremy Bernstein
92
16
0
23 May 2024
Conformal Counterfactual Inference under Hidden Confounding
Conformal Counterfactual Inference under Hidden Confounding
Zonghao Chen
Ruocheng Guo
Jean-François Ton
Yang Liu
CMLOffRL
229
3
0
20 May 2024
A Method on Searching Better Activation Functions
A Method on Searching Better Activation Functions
Haoyuan Sun
Zihao Wu
Bo Xia
Pu Chang
Zibin Dong
Yifu Yuan
Yongzhe Chang
Xueqian Wang
75
3
0
19 May 2024
Random ReLU Neural Networks as Non-Gaussian Processes
Random ReLU Neural Networks as Non-Gaussian Processes
Rahul Parhi
Pakshal Bohra
Ayoub El Biari
Mehrsa Pourya
Michael Unser
131
1
0
16 May 2024
Restoring balance: principled under/oversampling of data for optimal classification
Restoring balance: principled under/oversampling of data for optimal classification
Emanuele Loffredo
Mauro Pastore
Simona Cocco
R. Monasson
117
9
0
15 May 2024
Spectral complexity of deep neural networks
Spectral complexity of deep neural networks
Simmaco Di Lillo
Domenico Marinucci
Michele Salvi
Stefano Vigogna
BDL
180
2
0
15 May 2024
Wilsonian Renormalization of Neural Network Gaussian Processes
Wilsonian Renormalization of Neural Network Gaussian Processes
Jessica N. Howard
Ro Jefferson
Anindita Maiti
Zohar Ringel
BDL
182
3
0
09 May 2024
Multi-layer random features and the approximation power of neural
  networks
Multi-layer random features and the approximation power of neural networks
Rustem Takhanov
69
1
0
26 Apr 2024
The Positivity of the Neural Tangent Kernel
The Positivity of the Neural Tangent Kernel
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
104
3
0
19 Apr 2024
BayesJudge: Bayesian Kernel Language Modelling with Confidence
  Uncertainty in Legal Judgment Prediction
BayesJudge: Bayesian Kernel Language Modelling with Confidence Uncertainty in Legal Judgment Prediction
Ubaid Azam
Imran Razzak
Shelly Vishwakarma
Hakim Hacid
Dell Zhang
Shoaib Jameel
UQCVELMBDL
77
0
0
16 Apr 2024
Log-PDE Methods for Rough Signature Kernels
Log-PDE Methods for Rough Signature Kernels
M. Lemercier
Terry Lyons
C. Salvi
205
2
0
01 Apr 2024
Bayesian Exploration of Pre-trained Models for Low-shot Image
  Classification
Bayesian Exploration of Pre-trained Models for Low-shot Image Classification
Yibo Miao
Yu Lei
Feng Zhou
Zhijie Deng
VLMUQCVBDL
109
3
0
30 Mar 2024
Tensor Network-Constrained Kernel Machines as Gaussian Processes
Tensor Network-Constrained Kernel Machines as Gaussian Processes
Frederiek Wesel
Kim Batselier
144
0
0
28 Mar 2024
A Unified Kernel for Neural Network Learning
A Unified Kernel for Neural Network Learning
Shao-Qun Zhang
Zong-Yi Chen
Yong-Ming Tian
Xun Lu
95
1
0
26 Mar 2024
Approximation with Random Shallow ReLU Networks with Applications to
  Model Reference Adaptive Control
Approximation with Random Shallow ReLU Networks with Applications to Model Reference Adaptive Control
Andrew G. Lamperski
Tyler Lekang
76
3
0
25 Mar 2024
Improving Forward Compatibility in Class Incremental Learning by Increasing Representation Rank and Feature Richness
Improving Forward Compatibility in Class Incremental Learning by Increasing Representation Rank and Feature Richness
Jaeill Kim
Wonseok Lee
Moonjung Eo
Wonjong Rhee
CLL
123
0
0
22 Mar 2024
Topological Representations of Heterogeneous Learning Dynamics of
  Recurrent Spiking Neural Networks
Topological Representations of Heterogeneous Learning Dynamics of Recurrent Spiking Neural Networks
Biswadeep Chakraborty
Saibal Mukhopadhyay
90
3
0
19 Mar 2024
Neural network representation of quantum systems
Neural network representation of quantum systems
Koji Hashimoto
Yuji Hirono
Jun Maeda
Jojiro Totsuka-Yoshinaka
87
2
0
18 Mar 2024
Reconstructing Blood Flow in Data-Poor Regimes: A Vasculature Network
  Kernel for Gaussian Process Regression
Reconstructing Blood Flow in Data-Poor Regimes: A Vasculature Network Kernel for Gaussian Process Regression
S. Z. Ashtiani
Mohammad Sarabian
K. Laksari
H. Babaee
59
4
0
14 Mar 2024
Transformers Learn Low Sensitivity Functions: Investigations and Implications
Transformers Learn Low Sensitivity Functions: Investigations and Implications
Bhavya Vasudeva
Deqing Fu
Tianyi Zhou
Elliott Kau
Youqi Huang
Vatsal Sharan
118
2
0
11 Mar 2024
Density-Regression: Efficient and Distance-Aware Deep Regressor for
  Uncertainty Estimation under Distribution Shifts
Density-Regression: Efficient and Distance-Aware Deep Regressor for Uncertainty Estimation under Distribution Shifts
H. Bui
Anqi Liu
OODBDLUQCV
195
4
0
07 Mar 2024
GNN-VPA: A Variance-Preserving Aggregation Strategy for Graph Neural
  Networks
GNN-VPA: A Variance-Preserving Aggregation Strategy for Graph Neural Networks
Lisa Schneckenreiter
Richard Freinschlag
Florian Sestak
Johannes Brandstetter
Günter Klambauer
Andreas Mayr
117
5
0
07 Mar 2024
Sparse Spiking Neural Network: Exploiting Heterogeneity in Timescales
  for Pruning Recurrent SNN
Sparse Spiking Neural Network: Exploiting Heterogeneity in Timescales for Pruning Recurrent SNN
Biswadeep Chakraborty
Beomseok Kang
H. Kumar
Saibal Mukhopadhyay
131
11
0
06 Mar 2024
Emergent Equivariance in Deep Ensembles
Emergent Equivariance in Deep Ensembles
Jan E. Gerken
Pan Kessel
UQCVMDE
106
8
0
05 Mar 2024
Previous
12345...121314
Next