Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00165
Cited By
v1
v2
v3 (latest)
Deep Neural Networks as Gaussian Processes
1 November 2017
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Neural Networks as Gaussian Processes"
50 / 696 papers shown
Title
Adversarial Robustness Guarantees for Random Deep Neural Networks
Giacomo De Palma
B. Kiani
S. Lloyd
AAML
OOD
64
8
0
13 Apr 2020
On the Neural Tangent Kernel of Deep Networks with Orthogonal Initialization
Wei Huang
Weitao Du
R. Xu
85
38
0
13 Apr 2020
Reinforcement Learning via Gaussian Processes with Neural Network Dual Kernels
I. Goumiri
Benjamin W. Priest
M. Schneider
GP
BDL
37
7
0
10 Apr 2020
Predicting the outputs of finite deep neural networks trained with noisy gradients
Gadi Naveh
Oded Ben-David
H. Sompolinsky
Zohar Ringel
121
23
0
02 Apr 2020
On Infinite-Width Hypernetworks
Etai Littwin
Tomer Galanti
Lior Wolf
Greg Yang
117
11
0
27 Mar 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
260
797
0
13 Mar 2020
FedLoc: Federated Learning Framework for Data-Driven Cooperative Localization and Location Data Processing
Feng Yin
Zhidi Lin
Yue Xu
Qinglei Kong
Deshi Li
Sergios Theodoridis
Shuguang Cui
Cui
FedML
156
4
0
08 Mar 2020
Neural Kernels Without Tangents
Vaishaal Shankar
Alex Fang
Wenshuo Guo
Sara Fridovich-Keil
Ludwig Schmidt
Jonathan Ragan-Kelley
Benjamin Recht
81
91
0
04 Mar 2020
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
244
241
0
04 Mar 2020
Double Trouble in Double Descent : Bias and Variance(s) in the Lazy Regime
Stéphane dÁscoli
Maria Refinetti
Giulio Biroli
Florent Krzakala
211
153
0
02 Mar 2020
Stable behaviour of infinitely wide deep neural networks
Stefano Favaro
S. Fortini
Stefano Peluchetti
BDL
83
28
0
01 Mar 2020
Convolutional Spectral Kernel Learning
Jian Li
Yong Liu
Weiping Wang
BDL
48
5
0
28 Feb 2020
Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning via Gaussian Processes
Jilin Hu
Jianbing Shen
B. Yang
Ling Shao
BDL
GNN
109
18
0
26 Feb 2020
Convex Geometry and Duality of Over-parameterized Neural Networks
Tolga Ergen
Mert Pilanci
MLT
138
56
0
25 Feb 2020
Avoiding Kernel Fixed Points: Computing with ELU and GELU Infinite Networks
Russell Tsuchida
Tim Pearce
Christopher van der Heide
Fred Roosta
M. Gallagher
75
8
0
20 Feb 2020
Robust Pruning at Initialization
Soufiane Hayou
Jean-François Ton
Arnaud Doucet
Yee Whye Teh
43
47
0
19 Feb 2020
Why Do Deep Residual Networks Generalize Better than Deep Feedforward Networks? -- A Neural Tangent Kernel Perspective
Kaixuan Huang
Yuqing Wang
Molei Tao
T. Zhao
MLT
62
98
0
14 Feb 2020
On Layer Normalization in the Transformer Architecture
Ruibin Xiong
Yunchang Yang
Di He
Kai Zheng
Shuxin Zheng
Chen Xing
Huishuai Zhang
Yanyan Lan
Liwei Wang
Tie-Yan Liu
AI4CE
160
1,006
0
12 Feb 2020
Taylorized Training: Towards Better Approximation of Neural Network Training at Finite Width
Yu Bai
Ben Krause
Huan Wang
Caiming Xiong
R. Socher
87
22
0
10 Feb 2020
Quasi-Equivalence of Width and Depth of Neural Networks
Fenglei Fan
Rongjie Lai
Ge Wang
111
11
0
06 Feb 2020
Function approximation by neural nets in the mean-field regime: Entropic regularization and controlled McKean-Vlasov dynamics
Belinda Tzen
Maxim Raginsky
85
17
0
05 Feb 2020
Gating creates slow modes and controls phase-space complexity in GRUs and LSTMs
T. Can
K. Krishnamurthy
D. Schwab
AI4CE
124
18
0
31 Jan 2020
On Random Kernels of Residual Architectures
Etai Littwin
Tomer Galanti
Lior Wolf
68
4
0
28 Jan 2020
On the infinite width limit of neural networks with a standard parameterization
Jascha Narain Sohl-Dickstein
Roman Novak
S. Schoenholz
Jaehoon Lee
94
47
0
21 Jan 2020
Disentangling Trainability and Generalization in Deep Neural Networks
Lechao Xiao
Jeffrey Pennington
S. Schoenholz
90
34
0
30 Dec 2019
Discriminative Clustering with Representation Learning with any Ratio of Labeled to Unlabeled Data
Corinne Jones
Vincent Roulet
Zaïd Harchaoui
121
1
0
30 Dec 2019
Mean field theory for deep dropout networks: digging up gradient backpropagation deeply
Wei Huang
R. Xu
Weitao Du
Yutian Zeng
Yunce Zhao
68
6
0
19 Dec 2019
Analytic expressions for the output evolution of a deep neural network
Anastasia Borovykh
43
0
0
18 Dec 2019
On the Bias-Variance Tradeoff: Textbooks Need an Update
Brady Neal
43
18
0
17 Dec 2019
On the relationship between multitask neural networks and multitask Gaussian Processes
Karthikeyan K
S. Bharti
Piyush Rai
BDL
18
0
0
12 Dec 2019
Location Trace Privacy Under Conditional Priors
Casey Meehan
Kamalika Chaudhuri
63
8
0
09 Dec 2019
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
108
231
0
05 Dec 2019
Implicit Priors for Knowledge Sharing in Bayesian Neural Networks
Jack K. Fitzsimons
Sebastian M. Schmon
Stephen J. Roberts
BDL
FedML
32
0
0
02 Dec 2019
On the Heavy-Tailed Theory of Stochastic Gradient Descent for Deep Neural Networks
Umut Simsekli
Mert Gurbuzbalaban
T. H. Nguyen
G. Richard
Levent Sagun
117
59
0
29 Nov 2019
Richer priors for infinitely wide multi-layer perceptrons
Russell Tsuchida
Fred Roosta
M. Gallagher
62
11
0
29 Nov 2019
Convex Formulation of Overparameterized Deep Neural Networks
Cong Fang
Yihong Gu
Weizhong Zhang
Tong Zhang
92
28
0
18 Nov 2019
Enhanced Convolutional Neural Tangent Kernels
Zhiyuan Li
Ruosong Wang
Dingli Yu
S. Du
Wei Hu
Ruslan Salakhutdinov
Sanjeev Arora
110
133
0
03 Nov 2019
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
217
202
0
28 Oct 2019
Explicitly Bayesian Regularizations in Deep Learning
Xinjie Lan
Kenneth Barner
UQCV
BDL
AI4CE
112
1
0
22 Oct 2019
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
Eyke Hüllermeier
Willem Waegeman
PER
UD
274
1,445
0
21 Oct 2019
Why bigger is not always better: on finite and infinite neural networks
Laurence Aitchison
251
54
0
17 Oct 2019
Pathological spectra of the Fisher information metric and its variants in deep neural networks
Ryo Karakida
S. Akaho
S. Amari
84
28
0
14 Oct 2019
Large Deviation Analysis of Function Sensitivity in Random Deep Neural Networks
Bo Li
D. Saad
74
12
0
13 Oct 2019
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Arnu Pretorius
Herman Kamper
Steve Kroon
66
9
0
12 Oct 2019
The Expressivity and Training of Deep Neural Networks: toward the Edge of Chaos?
Gege Zhang
Gang-cheng Li
Ningwei Shen
Weidong Zhang
85
6
0
11 Oct 2019
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
89
162
0
03 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
Jason D. Lee
85
116
0
03 Oct 2019
Truth or Backpropaganda? An Empirical Investigation of Deep Learning Theory
Micah Goldblum
Jonas Geiping
Avi Schwarzschild
Michael Moeller
Tom Goldstein
135
34
0
01 Oct 2019
The asymptotic spectrum of the Hessian of DNN throughout training
Arthur Jacot
Franck Gabriel
Clément Hongler
145
35
0
01 Oct 2019
Non-Gaussian processes and neural networks at finite widths
Sho Yaida
117
88
0
30 Sep 2019
Previous
1
2
3
...
11
12
13
14
Next