Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00165
Cited By
Deep Neural Networks as Gaussian Processes
1 November 2017
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Neural Networks as Gaussian Processes"
50 / 692 papers shown
Title
A connection between probability, physics and neural networks
Sascha Ranftl
PINN
22
9
0
26 Sep 2022
Variational Inference for Infinitely Deep Neural Networks
Achille Nazaret
David M. Blei
BDL
27
11
0
21 Sep 2022
Fast Neural Kernel Embeddings for General Activations
Insu Han
A. Zandieh
Jaehoon Lee
Roman Novak
Lechao Xiao
Amin Karbasi
65
18
0
09 Sep 2022
On Kernel Regression with Data-Dependent Kernels
James B. Simon
BDL
31
3
0
04 Sep 2022
Neural Tangent Kernel: A Survey
Eugene Golikov
Eduard Pokonechnyy
Vladimir Korviakov
40
13
0
29 Aug 2022
Bayesian Neural Network Language Modeling for Speech Recognition
Boyang Xue
Shoukang Hu
Junhao Xu
Mengzhe Geng
Xunying Liu
Helen M. Meng
UQCV
BDL
49
14
0
28 Aug 2022
Gaussian Process Surrogate Models for Neural Networks
Michael Y. Li
Erin Grant
Thomas Griffiths
BDL
SyDa
43
7
0
11 Aug 2022
Deep Maxout Network Gaussian Process
Libin Liang
Ye Tian
Ge Cheng
BDL
19
0
0
08 Aug 2022
Multi-fidelity surrogate modeling using long short-term memory networks
Paolo Conti
Mengwu Guo
Andrea Manzoni
J. Hesthaven
AI4CE
36
48
0
05 Aug 2022
What Can Be Learnt With Wide Convolutional Neural Networks?
Francesco Cagnetta
Alessandro Favero
Matthieu Wyart
MLT
46
12
0
01 Aug 2022
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Can Chen
Xiangshan Chen
Chen Ma
Zixuan Liu
Xue Liu
98
36
0
24 Jul 2022
Statistical Hypothesis Testing Based on Machine Learning: Large Deviations Analysis
P. Braca
L. Millefiori
A. Aubry
S. Maranò
A. De Maio
P. Willett
39
12
0
22 Jul 2022
Single Model Uncertainty Estimation via Stochastic Data Centering
Jayaraman J. Thiagarajan
Rushil Anirudh
V. Narayanaswamy
P. Bremer
UQCV
OOD
35
26
0
14 Jul 2022
On the Robustness of Bayesian Neural Networks to Adversarial Attacks
Luca Bortolussi
Ginevra Carbone
Luca Laurenti
A. Patané
G. Sanguinetti
Matthew Wicker
AAML
24
11
0
13 Jul 2022
Synergy and Symmetry in Deep Learning: Interactions between the Data, Model, and Inference Algorithm
Lechao Xiao
Jeffrey Pennington
45
10
0
11 Jul 2022
Variational Neural Networks
Illia Oleksiienko
D. Tran
Alexandros Iosifidis
BDL
UQCV
41
8
0
04 Jul 2022
Memory Safe Computations with XLA Compiler
A. Artemev
Tilman Roeder
Mark van der Wilk
37
8
0
28 Jun 2022
AutoInit: Automatic Initialization via Jacobian Tuning
Tianyu He
Darshil Doshi
Andrey Gromov
27
4
0
27 Jun 2022
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
34
0
0
27 Jun 2022
A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel
Mohamad Amin Mohamadi
Wonho Bae
Danica J. Sutherland
AAML
34
27
0
25 Jun 2022
Laziness, Barren Plateau, and Noise in Machine Learning
Junyu Liu
Zexi Lin
Liang Jiang
43
21
0
19 Jun 2022
Photoelectric Factor Prediction Using Automated Learning and Uncertainty Quantification
K. Alsamadony
A. Ibrahim
S. Elkatatny
A. Abdulraheem
17
1
0
17 Jun 2022
Fast Finite Width Neural Tangent Kernel
Roman Novak
Jascha Narain Sohl-Dickstein
S. Schoenholz
AAML
30
54
0
17 Jun 2022
Large-width asymptotics for ReLU neural networks with
α
α
α
-Stable initializations
Stefano Favaro
S. Fortini
Stefano Peluchetti
28
2
0
16 Jun 2022
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
48
6
0
15 Jun 2022
Implicit Regularization or Implicit Conditioning? Exact Risk Trajectories of SGD in High Dimensions
Courtney Paquette
Elliot Paquette
Ben Adlam
Jeffrey Pennington
25
13
0
15 Jun 2022
Deep Variational Implicit Processes
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDL
33
5
0
14 Jun 2022
Gradient Boosting Performs Gaussian Process Inference
Aleksei Ustimenko
Artem Beliakov
Liudmila Prokhorenkova
BDL
28
5
0
11 Jun 2022
Overcoming the Spectral Bias of Neural Value Approximation
Ge Yang
Anurag Ajay
Pulkit Agrawal
39
25
0
09 Jun 2022
Adversarial Reprogramming Revisited
Matthias Englert
R. Lazic
AAML
29
9
0
07 Jun 2022
The Neural Covariance SDE: Shaped Infinite Depth-and-Width Networks at Initialization
Mufan Li
Mihai Nica
Daniel M. Roy
55
37
0
06 Jun 2022
Asymptotic Properties for Bayesian Neural Network in Besov Space
Kyeongwon Lee
Jaeyong Lee
BDL
27
4
0
01 Jun 2022
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and Inference in Sparsity-Aware Modeling
Lei Cheng
Feng Yin
Sergios Theodoridis
S. Chatzis
Tsung-Hui Chang
73
75
0
28 May 2022
Why So Pessimistic? Estimating Uncertainties for Offline RL through Ensembles, and Why Their Independence Matters
Seyed Kamyar Seyed Ghasemipour
S. Gu
Ofir Nachum
OffRL
31
69
0
27 May 2022
Position: Tensor Networks are a Valuable Asset for Green AI
Eva Memmel
Clara Menzen
Jetze T. Schuurmans
Frederiek Wesel
Kim Batselier
38
6
0
25 May 2022
Gaussian Pre-Activations in Neural Networks: Myth or Reality?
Pierre Wolinski
Julyan Arbel
AI4CE
76
8
0
24 May 2022
Split personalities in Bayesian Neural Networks: the case for full marginalisation
David Yallup
Will Handley
Michael P. Hobson
A. Lasenby
Pablo Lemos
30
1
0
23 May 2022
Mean-Field Analysis of Two-Layer Neural Networks: Global Optimality with Linear Convergence Rates
Jingwei Zhang
Xunpeng Huang
Jincheng Yu
MLT
18
1
0
19 May 2022
Diverse Weight Averaging for Out-of-Distribution Generalization
Alexandre Ramé
Matthieu Kirchmeyer
Thibaud Rahier
A. Rakotomamonjy
Patrick Gallinari
Matthieu Cord
OOD
199
129
0
19 May 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
45
77
0
19 May 2022
Deep neural networks with dependent weights: Gaussian Process mixture limit, heavy tails, sparsity and compressibility
Hoileong Lee
Fadhel Ayed
Paul Jung
Juho Lee
Hongseok Yang
François Caron
51
10
0
17 May 2022
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel
Ziyang Jiang
Tongshu Zheng
Yiling Liu
David Carlson
32
4
0
15 May 2022
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent
Yiping Lu
Jose H. Blanchet
Lexing Ying
40
7
0
15 May 2022
Deep Architecture Connectivity Matters for Its Convergence: A Fine-Grained Analysis
Wuyang Chen
Wei Huang
Xinyu Gong
Boris Hanin
Zhangyang Wang
43
7
0
11 May 2022
Investigating Generalization by Controlling Normalized Margin
Alexander R. Farhang
Jeremy Bernstein
Kushal Tirumala
Yang Liu
Yisong Yue
33
6
0
08 May 2022
Variational Inference for Nonlinear Inverse Problems via Neural Net Kernels: Comparison to Bayesian Neural Networks, Application to Topology Optimization
Vahid Keshavarzzadeh
Robert M. Kirby
A. Narayan
BDL
24
2
0
07 May 2022
NeuralEF: Deconstructing Kernels by Deep Neural Networks
Zhijie Deng
Jiaxin Shi
Jun Zhu
32
18
0
30 Apr 2022
Deep Ensemble as a Gaussian Process Approximate Posterior
Zhijie Deng
Feng Zhou
Jianfei Chen
Guoqiang Wu
Jun Zhu
UQCV
24
5
0
30 Apr 2022
Convergence of neural networks to Gaussian mixture distribution
Yasuhiko Asao
Ryotaro Sakamoto
S. Takagi
BDL
40
2
0
26 Apr 2022
On Feature Learning in Neural Networks with Global Convergence Guarantees
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
36
13
0
22 Apr 2022
Previous
1
2
3
...
5
6
7
...
12
13
14
Next