ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.00887
  4. Cited By
How to Escape Saddle Points Efficiently

How to Escape Saddle Points Efficiently

2 March 2017
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
    ODL
ArXivPDFHTML

Papers citing "How to Escape Saddle Points Efficiently"

50 / 468 papers shown
Title
On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient
  Langevin Dynamics
On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient Langevin Dynamics
Xi Chen
S. Du
Xin T. Tong
34
33
0
30 Apr 2019
Provable Bregman-divergence based Methods for Nonconvex and
  Non-Lipschitz Problems
Provable Bregman-divergence based Methods for Nonconvex and Non-Lipschitz Problems
Qiuwei Li
Zhihui Zhu
Gongguo Tang
M. Wakin
17
26
0
22 Apr 2019
SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle
  Points
SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points
Zhize Li
15
38
0
19 Apr 2019
Convergence rates for the stochastic gradient descent method for
  non-convex objective functions
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
19
101
0
02 Apr 2019
Annealing for Distributed Global Optimization
Annealing for Distributed Global Optimization
Brian Swenson
S. Kar
H. Vincent Poor
J. M. F. Moura
35
30
0
18 Mar 2019
Theory III: Dynamics and Generalization in Deep Networks
Theory III: Dynamics and Generalization in Deep Networks
Andrzej Banburski
Q. Liao
Brando Miranda
Lorenzo Rosasco
Fernanda De La Torre
Jack Hidary
T. Poggio
AI4CE
35
3
0
12 Mar 2019
Online Meta-Learning
Online Meta-Learning
Chelsea Finn
Aravind Rajeswaran
Sham Kakade
Sergey Levine
CLL
33
249
0
22 Feb 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with
  Structured Covariance Noise
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
25
22
0
21 Feb 2019
On Nonconvex Optimization for Machine Learning: Gradients,
  Stochasticity, and Saddle Points
On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle Points
Chi Jin
Praneeth Netrapalli
Rong Ge
Sham Kakade
Michael I. Jordan
30
61
0
13 Feb 2019
The Complexity of Making the Gradient Small in Stochastic Convex
  Optimization
The Complexity of Making the Gradient Small in Stochastic Convex Optimization
Dylan J. Foster
Ayush Sekhari
Ohad Shamir
Nathan Srebro
Karthik Sridharan
Blake E. Woodworth
16
51
0
13 Feb 2019
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
Haowei He
Gao Huang
Yang Yuan
ODL
MLT
28
148
0
02 Feb 2019
What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization?
What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization?
Chi Jin
Praneeth Netrapalli
Michael I. Jordan
21
82
0
02 Feb 2019
Sharp Analysis for Nonconvex SGD Escaping from Saddle Points
Sharp Analysis for Nonconvex SGD Escaping from Saddle Points
Cong Fang
Zhouchen Lin
Tong Zhang
23
104
0
01 Feb 2019
Stochastic Recursive Variance-Reduced Cubic Regularization Methods
Stochastic Recursive Variance-Reduced Cubic Regularization Methods
Dongruo Zhou
Quanquan Gu
19
26
0
31 Jan 2019
Numerically Recovering the Critical Points of a Deep Linear Autoencoder
Numerically Recovering the Critical Points of a Deep Linear Autoencoder
Charles G. Frye
Neha S. Wadia
M. DeWeese
K. Bouchard
30
6
0
29 Jan 2019
Escaping Saddle Points with Adaptive Gradient Methods
Escaping Saddle Points with Adaptive Gradient Methods
Matthew Staib
Sashank J. Reddi
Satyen Kale
Sanjiv Kumar
S. Sra
ODL
14
73
0
26 Jan 2019
Fine-Grained Analysis of Optimization and Generalization for
  Overparameterized Two-Layer Neural Networks
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
57
961
0
24 Jan 2019
Perturbed Proximal Descent to Escape Saddle Points for Non-convex and
  Non-smooth Objective Functions
Perturbed Proximal Descent to Escape Saddle Points for Non-convex and Non-smooth Objective Functions
Zhishen Huang
Stephen Becker
14
8
0
24 Jan 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
26
94
0
24 Jan 2019
Trajectory Normalized Gradients for Distributed Optimization
Trajectory Normalized Gradients for Distributed Optimization
Jianqiao Wangni
Ke Li
Jianbo Shi
Jitendra Malik
27
2
0
24 Jan 2019
A Deterministic Gradient-Based Approach to Avoid Saddle Points
A Deterministic Gradient-Based Approach to Avoid Saddle Points
L. Kreusser
Stanley J. Osher
Bao Wang
ODL
32
3
0
21 Jan 2019
Quasi-potential as an implicit regularizer for the loss function in the
  stochastic gradient descent
Quasi-potential as an implicit regularizer for the loss function in the stochastic gradient descent
Wenqing Hu
Zhanxing Zhu
Haoyi Xiong
Jun Huan
MLT
11
9
0
18 Jan 2019
Sharp Restricted Isometry Bounds for the Inexistence of Spurious Local
  Minima in Nonconvex Matrix Recovery
Sharp Restricted Isometry Bounds for the Inexistence of Spurious Local Minima in Nonconvex Matrix Recovery
Richard Y. Zhang
Somayeh Sojoudi
Javad Lavaei
11
51
0
07 Jan 2019
SGD Converges to Global Minimum in Deep Learning via Star-convex Path
SGD Converges to Global Minimum in Deep Learning via Star-convex Path
Yi Zhou
Junjie Yang
Huishuai Zhang
Yingbin Liang
Vahid Tarokh
22
71
0
02 Jan 2019
On the Benefit of Width for Neural Networks: Disappearance of Bad Basins
On the Benefit of Width for Neural Networks: Disappearance of Bad Basins
Dawei Li
Tian Ding
Ruoyu Sun
34
38
0
28 Dec 2018
Sample Efficient Stochastic Variance-Reduced Cubic Regularization Method
Sample Efficient Stochastic Variance-Reduced Cubic Regularization Method
Dongruo Zhou
Pan Xu
Quanquan Gu
11
4
0
29 Nov 2018
Blind Over-the-Air Computation and Data Fusion via Provable Wirtinger
  Flow
Blind Over-the-Air Computation and Data Fusion via Provable Wirtinger Flow
Jialin Dong
Yuanming Shi
Z. Ding
17
59
0
12 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
44
1,126
0
09 Nov 2018
A Geometric Approach of Gradient Descent Algorithms in Linear Neural
  Networks
A Geometric Approach of Gradient Descent Algorithms in Linear Neural Networks
S. Mahabadi
Zhenyu Liao
Romain Couillet
15
13
0
08 Nov 2018
Global Optimality in Distributed Low-rank Matrix Factorization
Global Optimality in Distributed Low-rank Matrix Factorization
Zhihui Zhu
Qiuwei Li
Xinshuo Yang
Gongguo Tang
Michael B. Wakin
19
4
0
07 Nov 2018
Understanding the Acceleration Phenomenon via High-Resolution
  Differential Equations
Understanding the Acceleration Phenomenon via High-Resolution Differential Equations
Bin Shi
S. Du
Michael I. Jordan
Weijie J. Su
17
254
0
21 Oct 2018
Fault Tolerance in Iterative-Convergent Machine Learning
Fault Tolerance in Iterative-Convergent Machine Learning
Aurick Qiao
Bryon Aragam
Bingjing Zhang
Eric Xing
26
41
0
17 Oct 2018
Cubic Regularization with Momentum for Nonconvex Optimization
Cubic Regularization with Momentum for Nonconvex Optimization
Zhe Wang
Yi Zhou
Yingbin Liang
Guanghui Lan
14
26
0
09 Oct 2018
Stein Neural Sampler
Stein Neural Sampler
Tianyang Hu
Zixiang Chen
Hanxi Sun
Jincheng Bai
Mao Ye
Guang Cheng
SyDa
GAN
22
34
0
08 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
65
1,252
0
04 Oct 2018
Directional Analysis of Stochastic Gradient Descent via von Mises-Fisher
  Distributions in Deep learning
Directional Analysis of Stochastic Gradient Descent via von Mises-Fisher Distributions in Deep learning
Cheolhyoung Lee
Kyunghyun Cho
Wanmo Kang
17
8
0
29 Sep 2018
Stochastic Second-order Methods for Non-convex Optimization with Inexact
  Hessian and Gradient
Stochastic Second-order Methods for Non-convex Optimization with Inexact Hessian and Gradient
Liu Liu
Xuanqing Liu
Cho-Jui Hsieh
Dacheng Tao
ODL
19
10
0
26 Sep 2018
Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview
Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview
Yuejie Chi
Yue M. Lu
Yuxin Chen
39
416
0
25 Sep 2018
Second-order Guarantees of Distributed Gradient Algorithms
Second-order Guarantees of Distributed Gradient Algorithms
Amir Daneshmand
G. Scutari
Vyacheslav Kungurtsev
24
59
0
23 Sep 2018
Melding the Data-Decisions Pipeline: Decision-Focused Learning for
  Combinatorial Optimization
Melding the Data-Decisions Pipeline: Decision-Focused Learning for Combinatorial Optimization
Bryan Wilder
B. Dilkina
Milind Tambe
OffRL
AI4CE
19
292
0
14 Sep 2018
Escaping Saddle Points in Constrained Optimization
Escaping Saddle Points in Constrained Optimization
Aryan Mokhtari
Asuman Ozdaglar
Ali Jadbabaie
11
53
0
06 Sep 2018
Collapse of Deep and Narrow Neural Nets
Collapse of Deep and Narrow Neural Nets
Lu Lu
Yanhui Su
George Karniadakis
ODL
27
153
0
15 Aug 2018
On the Analysis of Trajectories of Gradient Descent in the Optimization
  of Deep Neural Networks
On the Analysis of Trajectories of Gradient Descent in the Optimization of Deep Neural Networks
Adepu Ravi Sankar
Vishwak Srinivasan
V. Balasubramanian
11
1
0
21 Jul 2018
Optimistic mirror descent in saddle-point problems: Going the extra
  (gradient) mile
Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile
P. Mertikopoulos
Bruno Lecouat
Houssam Zenati
Chuan-Sheng Foo
V. Chandrasekhar
Georgios Piliouras
43
292
0
07 Jul 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path
  Integrated Differential Estimator
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
50
571
0
04 Jul 2018
On the Implicit Bias of Dropout
On the Implicit Bias of Dropout
Poorya Mianjy
R. Arora
René Vidal
27
66
0
26 Jun 2018
Finding Local Minima via Stochastic Nested Variance Reduction
Finding Local Minima via Stochastic Nested Variance Reduction
Dongruo Zhou
Pan Xu
Quanquan Gu
23
23
0
22 Jun 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Learning One-hidden-layer ReLU Networks via Gradient Descent
Learning One-hidden-layer ReLU Networks via Gradient Descent
Xiao Zhang
Yaodong Yu
Lingxiao Wang
Quanquan Gu
MLT
33
134
0
20 Jun 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed
  Learning
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
32
98
0
14 Jun 2018
Previous
123...10789
Next