Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.00887
Cited By
How to Escape Saddle Points Efficiently
2 March 2017
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to Escape Saddle Points Efficiently"
50 / 468 papers shown
Title
On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient Langevin Dynamics
Xi Chen
S. Du
Xin T. Tong
34
33
0
30 Apr 2019
Provable Bregman-divergence based Methods for Nonconvex and Non-Lipschitz Problems
Qiuwei Li
Zhihui Zhu
Gongguo Tang
M. Wakin
17
26
0
22 Apr 2019
SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points
Zhize Li
15
38
0
19 Apr 2019
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
19
101
0
02 Apr 2019
Annealing for Distributed Global Optimization
Brian Swenson
S. Kar
H. Vincent Poor
J. M. F. Moura
35
30
0
18 Mar 2019
Theory III: Dynamics and Generalization in Deep Networks
Andrzej Banburski
Q. Liao
Brando Miranda
Lorenzo Rosasco
Fernanda De La Torre
Jack Hidary
T. Poggio
AI4CE
35
3
0
12 Mar 2019
Online Meta-Learning
Chelsea Finn
Aravind Rajeswaran
Sham Kakade
Sergey Levine
CLL
33
249
0
22 Feb 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
25
22
0
21 Feb 2019
On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle Points
Chi Jin
Praneeth Netrapalli
Rong Ge
Sham Kakade
Michael I. Jordan
30
61
0
13 Feb 2019
The Complexity of Making the Gradient Small in Stochastic Convex Optimization
Dylan J. Foster
Ayush Sekhari
Ohad Shamir
Nathan Srebro
Karthik Sridharan
Blake E. Woodworth
16
51
0
13 Feb 2019
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
Haowei He
Gao Huang
Yang Yuan
ODL
MLT
28
148
0
02 Feb 2019
What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization?
Chi Jin
Praneeth Netrapalli
Michael I. Jordan
21
82
0
02 Feb 2019
Sharp Analysis for Nonconvex SGD Escaping from Saddle Points
Cong Fang
Zhouchen Lin
Tong Zhang
23
104
0
01 Feb 2019
Stochastic Recursive Variance-Reduced Cubic Regularization Methods
Dongruo Zhou
Quanquan Gu
19
26
0
31 Jan 2019
Numerically Recovering the Critical Points of a Deep Linear Autoencoder
Charles G. Frye
Neha S. Wadia
M. DeWeese
K. Bouchard
30
6
0
29 Jan 2019
Escaping Saddle Points with Adaptive Gradient Methods
Matthew Staib
Sashank J. Reddi
Satyen Kale
Sanjiv Kumar
S. Sra
ODL
14
73
0
26 Jan 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
57
961
0
24 Jan 2019
Perturbed Proximal Descent to Escape Saddle Points for Non-convex and Non-smooth Objective Functions
Zhishen Huang
Stephen Becker
14
8
0
24 Jan 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
26
94
0
24 Jan 2019
Trajectory Normalized Gradients for Distributed Optimization
Jianqiao Wangni
Ke Li
Jianbo Shi
Jitendra Malik
27
2
0
24 Jan 2019
A Deterministic Gradient-Based Approach to Avoid Saddle Points
L. Kreusser
Stanley J. Osher
Bao Wang
ODL
32
3
0
21 Jan 2019
Quasi-potential as an implicit regularizer for the loss function in the stochastic gradient descent
Wenqing Hu
Zhanxing Zhu
Haoyi Xiong
Jun Huan
MLT
11
9
0
18 Jan 2019
Sharp Restricted Isometry Bounds for the Inexistence of Spurious Local Minima in Nonconvex Matrix Recovery
Richard Y. Zhang
Somayeh Sojoudi
Javad Lavaei
11
51
0
07 Jan 2019
SGD Converges to Global Minimum in Deep Learning via Star-convex Path
Yi Zhou
Junjie Yang
Huishuai Zhang
Yingbin Liang
Vahid Tarokh
22
71
0
02 Jan 2019
On the Benefit of Width for Neural Networks: Disappearance of Bad Basins
Dawei Li
Tian Ding
Ruoyu Sun
34
38
0
28 Dec 2018
Sample Efficient Stochastic Variance-Reduced Cubic Regularization Method
Dongruo Zhou
Pan Xu
Quanquan Gu
11
4
0
29 Nov 2018
Blind Over-the-Air Computation and Data Fusion via Provable Wirtinger Flow
Jialin Dong
Yuanming Shi
Z. Ding
17
59
0
12 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
44
1,126
0
09 Nov 2018
A Geometric Approach of Gradient Descent Algorithms in Linear Neural Networks
S. Mahabadi
Zhenyu Liao
Romain Couillet
15
13
0
08 Nov 2018
Global Optimality in Distributed Low-rank Matrix Factorization
Zhihui Zhu
Qiuwei Li
Xinshuo Yang
Gongguo Tang
Michael B. Wakin
19
4
0
07 Nov 2018
Understanding the Acceleration Phenomenon via High-Resolution Differential Equations
Bin Shi
S. Du
Michael I. Jordan
Weijie J. Su
17
254
0
21 Oct 2018
Fault Tolerance in Iterative-Convergent Machine Learning
Aurick Qiao
Bryon Aragam
Bingjing Zhang
Eric Xing
26
41
0
17 Oct 2018
Cubic Regularization with Momentum for Nonconvex Optimization
Zhe Wang
Yi Zhou
Yingbin Liang
Guanghui Lan
14
26
0
09 Oct 2018
Stein Neural Sampler
Tianyang Hu
Zixiang Chen
Hanxi Sun
Jincheng Bai
Mao Ye
Guang Cheng
SyDa
GAN
22
34
0
08 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
65
1,252
0
04 Oct 2018
Directional Analysis of Stochastic Gradient Descent via von Mises-Fisher Distributions in Deep learning
Cheolhyoung Lee
Kyunghyun Cho
Wanmo Kang
17
8
0
29 Sep 2018
Stochastic Second-order Methods for Non-convex Optimization with Inexact Hessian and Gradient
Liu Liu
Xuanqing Liu
Cho-Jui Hsieh
Dacheng Tao
ODL
19
10
0
26 Sep 2018
Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview
Yuejie Chi
Yue M. Lu
Yuxin Chen
39
416
0
25 Sep 2018
Second-order Guarantees of Distributed Gradient Algorithms
Amir Daneshmand
G. Scutari
Vyacheslav Kungurtsev
24
59
0
23 Sep 2018
Melding the Data-Decisions Pipeline: Decision-Focused Learning for Combinatorial Optimization
Bryan Wilder
B. Dilkina
Milind Tambe
OffRL
AI4CE
19
292
0
14 Sep 2018
Escaping Saddle Points in Constrained Optimization
Aryan Mokhtari
Asuman Ozdaglar
Ali Jadbabaie
11
53
0
06 Sep 2018
Collapse of Deep and Narrow Neural Nets
Lu Lu
Yanhui Su
George Karniadakis
ODL
27
153
0
15 Aug 2018
On the Analysis of Trajectories of Gradient Descent in the Optimization of Deep Neural Networks
Adepu Ravi Sankar
Vishwak Srinivasan
V. Balasubramanian
11
1
0
21 Jul 2018
Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile
P. Mertikopoulos
Bruno Lecouat
Houssam Zenati
Chuan-Sheng Foo
V. Chandrasekhar
Georgios Piliouras
43
292
0
07 Jul 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
50
571
0
04 Jul 2018
On the Implicit Bias of Dropout
Poorya Mianjy
R. Arora
René Vidal
27
66
0
26 Jun 2018
Finding Local Minima via Stochastic Nested Variance Reduction
Dongruo Zhou
Pan Xu
Quanquan Gu
23
23
0
22 Jun 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Learning One-hidden-layer ReLU Networks via Gradient Descent
Xiao Zhang
Yaodong Yu
Lingxiao Wang
Quanquan Gu
MLT
33
134
0
20 Jun 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
32
98
0
14 Jun 2018
Previous
1
2
3
...
10
7
8
9
Next