Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.00887
Cited By
How to Escape Saddle Points Efficiently
2 March 2017
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to Escape Saddle Points Efficiently"
50 / 468 papers shown
Title
Learning a Single Neuron with Gradient Methods
Gilad Yehudai
Ohad Shamir
MLT
27
63
0
15 Jan 2020
Proximal methods avoid active strict saddles of weakly convex functions
Damek Davis
Dmitriy Drusvyatskiy
15
3
0
16 Dec 2019
Analysis of the Optimization Landscapes for Overcomplete Representation Learning
Qing Qu
Yuexiang Zhai
Xiao Li
Yuqian Zhang
Zhihui Zhu
22
9
0
05 Dec 2019
Stationary Points of Shallow Neural Networks with Quadratic Activation Function
D. Gamarnik
Eren C. Kizildag
Ilias Zadik
19
13
0
03 Dec 2019
Error bound of critical points and KL property of exponent
1
/
2
1/2
1/2
for squared F-norm regularized factorization
Ting Tao
S. Pan
Shujun Bi
25
4
0
11 Nov 2019
Optimal Analysis of Subset-Selection Based L_p Low Rank Approximation
Chen Dan
Hong Wang
Hongyang R. Zhang
Yuchen Zhou
Pradeep Ravikumar
27
16
0
30 Oct 2019
Efficiently avoiding saddle points with zero order methods: No gradients required
Lampros Flokas
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Georgios Piliouras
28
32
0
29 Oct 2019
Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval
Yan Shuo Tan
Roman Vershynin
22
35
0
28 Oct 2019
Over Parameterized Two-level Neural Networks Can Learn Near Optimal Feature Representations
Cong Fang
Hanze Dong
Tong Zhang
28
18
0
25 Oct 2019
Improving the convergence of SGD through adaptive batch sizes
Scott Sievert
Zachary B. Charles
ODL
25
8
0
18 Oct 2019
Splitting Steepest Descent for Growing Neural Architectures
Qiang Liu
Lemeng Wu
Dilin Wang
16
61
0
06 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
Jason D. Lee
24
116
0
03 Oct 2019
Generalization Bounds for Convolutional Neural Networks
Shan Lin
Jingwei Zhang
MLT
30
34
0
03 Oct 2019
Escaping Saddle Points for Zeroth-order Nonconvex Optimization using Estimated Gradient Descent
Qinbo Bai
Mridul Agarwal
Vaneet Aggarwal
21
7
0
03 Oct 2019
Student Specialization in Deep ReLU Networks With Finite Width and Input Dimension
Yuandong Tian
MLT
22
8
0
30 Sep 2019
Mildly Overparametrized Neural Nets can Memorize Training Data Efficiently
Rong Ge
Runzhe Wang
Haoyu Zhao
TDI
18
20
0
26 Sep 2019
Dynamics of Deep Neural Networks and Neural Tangent Hierarchy
Jiaoyang Huang
H. Yau
33
147
0
18 Sep 2019
Quantum algorithm for finding the negative curvature direction in non-convex optimization
Kaining Zhang
Min-hsiu Hsieh
Liu Liu
Dacheng Tao
18
3
0
17 Sep 2019
Meta-Learning with Implicit Gradients
Aravind Rajeswaran
Chelsea Finn
Sham Kakade
Sergey Levine
51
844
0
10 Sep 2019
Towards Understanding the Importance of Noise in Training Neural Networks
Mo Zhou
Tianyi Liu
Yan Li
Dachao Lin
Enlu Zhou
T. Zhao
MLT
26
26
0
07 Sep 2019
Short-and-Sparse Deconvolution -- A Geometric Approach
Yenson Lau
Qing Qu
Han-Wen Kuo
Pengcheng Zhou
Yuqian Zhang
John N. Wright
33
29
0
28 Aug 2019
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
40
161
0
25 Aug 2019
KL property of exponent
1
/
2
1/2
1/2
of
ℓ
2
,
0
\ell_{2,0}
ℓ
2
,
0
-norm and DC regularized factorizations for low-rank matrix recovery
Shujun Bi
Ting Tao
S. Pan
23
1
0
24 Aug 2019
Second-Order Guarantees of Stochastic Gradient Descent in Non-Convex Optimization
Stefan Vlaski
Ali H. Sayed
ODL
37
21
0
19 Aug 2019
Instance Enhancement Batch Normalization: an Adaptive Regulator of Batch Noise
Senwei Liang
Zhongzhan Huang
Mingfu Liang
Haizhao Yang
30
57
0
12 Aug 2019
Extending the step-size restriction for gradient descent to avoid strict saddle points
Hayden Schaeffer
S. McCalla
24
4
0
05 Aug 2019
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
Alekh Agarwal
Sham Kakade
Jason D. Lee
G. Mahajan
13
316
0
01 Aug 2019
Heavy-ball Algorithms Always Escape Saddle Points
Tao Sun
Dongsheng Li
Zhe Quan
Hao Jiang
Shengguo Li
Y. Dou
ODL
20
21
0
23 Jul 2019
Hyperlink Regression via Bregman Divergence
Akifumi Okuno
Hidetoshi Shimodaira
36
6
0
22 Jul 2019
Distributed Inexact Successive Convex Approximation ADMM: Analysis-Part I
Sandeep Kumar
K. Rajawat
Daniel P. Palomar
32
4
0
21 Jul 2019
Distributed Global Optimization by Annealing
Brian Swenson
S. Kar
H. Vincent Poor
José M. F. Moura
25
3
0
20 Jul 2019
Towards Understanding Generalization in Gradient-Based Meta-Learning
Simon Guiroy
Vikas Verma
C. Pal
15
21
0
16 Jul 2019
The Landscape of Non-convex Empirical Risk with Degenerate Population Risk
Shuang Li
Gongguo Tang
M. Wakin
MedIm
31
7
0
11 Jul 2019
SNAP: Finding Approximate Second-Order Stationary Solutions Efficiently for Non-convex Linearly Constrained Problems
Songtao Lu
Meisam Razaviyayn
Bo Yang
Kejun Huang
Mingyi Hong
27
11
0
09 Jul 2019
Learning One-hidden-layer neural networks via Provable Gradient Descent with Random Initialization
Shuhao Xia
Yuanming Shi
ODL
MLT
14
0
0
04 Jul 2019
Distributed Learning in Non-Convex Environments -- Part II: Polynomial Escape from Saddle-Points
Stefan Vlaski
Ali H. Sayed
27
53
0
03 Jul 2019
Distributed Learning in Non-Convex Environments -- Part I: Agreement at a Linear Rate
Stefan Vlaski
Ali H. Sayed
17
69
0
03 Jul 2019
Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal Policies
Kaipeng Zhang
Alec Koppel
Haoqi Zhu
Tamer Basar
44
186
0
19 Jun 2019
On the Noisy Gradient Descent that Generalizes as SGD
Jingfeng Wu
Wenqing Hu
Haoyi Xiong
Jun Huan
Vladimir Braverman
Zhanxing Zhu
MLT
24
10
0
18 Jun 2019
Escaping from saddle points on Riemannian manifolds
Yue Sun
Nicolas Flammarion
Maryam Fazel
31
71
0
18 Jun 2019
Critical Point Finding with Newton-MR by Analogy to Computing Square Roots
Charles G. Frye
14
1
0
12 Jun 2019
Efficiently escaping saddle points on manifolds
Christopher Criscitiello
Nicolas Boumal
25
62
0
10 Jun 2019
On the Convergence of SARAH and Beyond
Bingcong Li
Meng Ma
G. Giannakis
33
26
0
05 Jun 2019
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
39
186
0
05 Jun 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
21
57
0
28 May 2019
Concavifiability and convergence: necessary and sufficient conditions for gradient descent analysis
Thulasi Tholeti
Sheetal Kalyani
MLT
14
0
0
28 May 2019
Robustness of accelerated first-order algorithms for strongly convex optimization problems
Hesameddin Mohammadi
Meisam Razaviyayn
M. Jovanović
17
41
0
27 May 2019
Linear Range in Gradient Descent
Angxiu Ni
Chaitanya Talnikar
ODL
14
2
0
11 May 2019
Stochastic Iterative Hard Thresholding for Graph-structured Sparsity Optimization
Baojian Zhou
F. Chen
Yiming Ying
34
7
0
09 May 2019
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Rong Ge
Zhize Li
Weiyao Wang
Xiang Wang
19
34
0
01 May 2019
Previous
1
2
3
...
10
6
7
8
9
Next