Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.00887
Cited By
How to Escape Saddle Points Efficiently
2 March 2017
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to Escape Saddle Points Efficiently"
50 / 468 papers shown
Title
Gradient Descent and the Power Method: Exploiting their connection to find the leftmost eigen-pair and escape saddle points
R. Tappenden
Martin Takáč
18
0
0
02 Nov 2022
Local Model Reconstruction Attacks in Federated Learning and their Uses
Ilias Driouich
Chuan Xu
Giovanni Neglia
F. Giroire
Eoin Thomas
AAML
FedML
38
2
0
28 Oct 2022
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
170
68
0
27 Oct 2022
Towards a Theoretical Foundation of Policy Optimization for Learning Control Policies
Bin Hu
Kaipeng Zhang
Na Li
M. Mesbahi
Maryam Fazel
Tamer Bacsar
87
27
0
10 Oct 2022
Differentially Private Deep Learning with ModelMix
Hanshen Xiao
Jun Wan
S. Devadas
29
3
0
07 Oct 2022
Zeroth-Order Negative Curvature Finding: Escaping Saddle Points without Gradients
Hualin Zhang
Huan Xiong
Bin Gu
35
7
0
04 Oct 2022
spred: Solving
L
1
L_1
L
1
Penalty with SGD
Liu Ziyin
Zihao Wang
51
14
0
03 Oct 2022
Behind the Scenes of Gradient Descent: A Trajectory Analysis via Basis Function Decomposition
Jianhao Ma
Li-Zhen Guo
S. Fattahi
46
4
0
01 Oct 2022
Nonconvex Matrix Factorization is Geodesically Convex: Global Landscape Analysis for Fixed-rank Matrix Optimization From a Riemannian Perspective
Yuetian Luo
Nicolas García Trillos
24
6
0
29 Sep 2022
On Quantum Speedups for Nonconvex Optimization via Quantum Tunneling Walks
Yizhou Liu
Weijie J. Su
Tongyang Li
41
18
0
29 Sep 2022
Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold
Can Yaras
Peng Wang
Zhihui Zhu
Laura Balzano
Qing Qu
30
42
0
19 Sep 2022
Versatile Single-Loop Method for Gradient Estimator: First and Second Order Optimality, and its Application to Federated Learning
Kazusato Oko
Shunta Akiyama
Tomoya Murata
Taiji Suzuki
FedML
45
0
0
01 Sep 2022
Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix Completion
G. Zhang
Hong-Ming Chiu
Richard Y. Zhang
27
10
0
24 Aug 2022
Simple and Optimal Stochastic Gradient Methods for Nonsmooth Nonconvex Optimization
Zhize Li
Jian Li
43
6
0
22 Aug 2022
CoShNet: A Hybrid Complex Valued Neural Network using Shearlets
Manny Ko
Ujjawal K. Panchal
Héctor Andrade-Loarca
Andres Mendez-Vazquez
33
1
0
14 Aug 2022
Quantized Adaptive Subgradient Algorithms and Their Applications
Ke Xu
Jianqiao Wangni
Yifan Zhang
Deheng Ye
Jiaxiang Wu
P. Zhao
36
0
0
11 Aug 2022
Agnostic Learning of General ReLU Activation Using Gradient Descent
Pranjal Awasthi
Alex K. Tang
Aravindan Vijayaraghavan
MLT
15
7
0
04 Aug 2022
Gradient descent provably escapes saddle points in the training of shallow ReLU networks
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
36
5
0
03 Aug 2022
A Gradient Smoothed Functional Algorithm with Truncated Cauchy Random Perturbations for Stochastic Optimization
Akash Mondal
A. PrashanthL.
S. Bhatnagar
30
2
0
30 Jul 2022
Accelerating Hamiltonian Monte Carlo via Chebyshev Integration Time
Jun-Kun Wang
Andre Wibisono
32
9
0
05 Jul 2022
Improved Global Guarantees for the Nonconvex Burer--Monteiro Factorization via Rank Overparameterization
Richard Y. Zhang
30
24
0
05 Jul 2022
A Theoretical Analysis of the Learning Dynamics under Class Imbalance
Emanuele Francazi
Marco Baity-Jesi
Aurelien Lucchi
30
16
0
01 Jul 2022
AFAFed -- Protocol analysis
E. Baccarelli
M. Scarpiniti
Alireza Momenzadeh
S. S. Ahrabi
FedML
8
0
0
29 Jun 2022
Explicit Regularization in Overparametrized Models via Noise Injection
Antonio Orvieto
Anant Raj
Hans Kersting
Francis R. Bach
23
26
0
09 Jun 2022
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
29
10
0
08 Jun 2022
Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
G. Zhang
S. Fattahi
Richard Y. Zhang
62
23
0
07 Jun 2022
On the Convergence of Optimizing Persistent-Homology-Based Losses
Yikai Zhang
Jiacheng Yao
Yusu Wang
Chao Chen
18
1
0
06 Jun 2022
Subspace Phase Retrieval
Meng Xu
Dekuan Dong
J. Wang
24
2
0
06 Jun 2022
First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces
Michael I. Jordan
Tianyi Lin
Emmanouil-Vasileios Vlatakis-Gkaragkounis
34
19
0
04 Jun 2022
Understanding Deep Learning via Decision Boundary
Shiye Lei
Fengxiang He
Yancheng Yuan
Dacheng Tao
25
13
0
03 Jun 2022
Non-convex online learning via algorithmic equivalence
Udaya Ghai
Zhou Lu
Elad Hazan
16
8
0
30 May 2022
HOUDINI: Escaping from Moderately Constrained Saddles
Dmitrii Avdiukhin
G. Yaroslavtsev
26
0
0
27 May 2022
Uniform Generalization Bound on Time and Inverse Temperature for Gradient Descent Algorithm and its Application to Analysis of Simulated Annealing
Keisuke Suzuki
AI4CE
33
0
0
25 May 2022
Weak Convergence of Approximate reflection coupling and its Application to Non-convex Optimization
Keisuke Suzuki
36
5
0
24 May 2022
Estimation and Inference by Stochastic Optimization
Jean-Jacques Forneron
38
5
0
06 May 2022
Byzantine Fault Tolerance in Distributed Machine Learning : a Survey
Djamila Bouhata
Hamouma Moumen
Moumen Hamouma
Ahcène Bounceur
AI4CE
31
7
0
05 May 2022
Gradient Descent, Stochastic Optimization, and Other Tales
Jun Lu
22
8
0
02 May 2022
Accelerating nuclear-norm regularized low-rank matrix optimization through Burer-Monteiro decomposition
Ching-pei Lee
Ling Liang
Tianyun Tang
Kim-Chuan Toh
37
11
0
29 Apr 2022
BEINIT: Avoiding Barren Plateaus in Variational Quantum Algorithms
Ankit Kulshrestha
Ilya Safro
18
37
0
28 Apr 2022
Accelerated Multiplicative Weights Update Avoids Saddle Points almost always
Yi-Hu Feng
Ioannis Panageas
Tianlin Li
16
2
0
25 Apr 2022
Convergence of gradient descent for deep neural networks
S. Chatterjee
ODL
23
20
0
30 Mar 2022
Personalized incentives as feedback design in generalized Nash equilibrium problems
F. Fabiani
Andrea Simonetto
Paul Goulart
21
4
0
24 Mar 2022
Noisy Low-rank Matrix Optimization: Geometry of Local Minima and Convergence Rate
Ziye Ma
Somayeh Sojoudi
43
6
0
08 Mar 2022
Whiplash Gradient Descent Dynamics
Subhransu S. Bhattacharjee
I. Petersen
14
0
0
04 Mar 2022
Second-order Symmetric Non-negative Latent Factor Analysis
L. Li
Xin Luo
25
3
0
04 Mar 2022
Understanding Contrastive Learning Requires Incorporating Inductive Biases
Nikunj Saunshi
Jordan T. Ash
Surbhi Goel
Dipendra Kumar Misra
Cyril Zhang
Sanjeev Arora
Sham Kakade
A. Krishnamurthy
SSL
29
109
0
28 Feb 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
31
8
0
18 Feb 2022
Trace norm regularization for multi-task learning with scarce data
Etienne Boursier
Mikhail Konobeev
Nicolas Flammarion
19
11
0
14 Feb 2022
Escaping Saddle Points with Bias-Variance Reduced Local Perturbed SGD for Communication Efficient Nonconvex Distributed Learning
Tomoya Murata
Taiji Suzuki
FedML
6
3
0
12 Feb 2022
Efficiently Escaping Saddle Points in Bilevel Optimization
Minhui Huang
Xuxing Chen
Kaiyi Ji
Shiqian Ma
Lifeng Lai
34
21
0
08 Feb 2022
Previous
1
2
3
4
5
6
...
8
9
10
Next