ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.00451
14
71

SGD Converges to Global Minimum in Deep Learning via Star-convex Path

2 January 2019
Yi Zhou
Junjie Yang
Huishuai Zhang
Yingbin Liang
Vahid Tarokh
ArXivPDFHTML
Abstract

Stochastic gradient descent (SGD) has been found to be surprisingly effective in training a variety of deep neural networks. However, there is still a lack of understanding on how and why SGD can train these complex networks towards a global minimum. In this study, we establish the convergence of SGD to a global minimum for nonconvex optimization problems that are commonly encountered in neural network training. Our argument exploits the following two important properties: 1) the training loss can achieve zero value (approximately), which has been widely observed in deep learning; 2) SGD follows a star-convex path, which is verified by various experiments in this paper. In such a context, our analysis shows that SGD, although has long been considered as a randomized algorithm, converges in an intrinsically deterministic manner to a global minimum.

View on arXiv
Comments on this paper