ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.00887
  4. Cited By
How to Escape Saddle Points Efficiently

How to Escape Saddle Points Efficiently

2 March 2017
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
    ODL
ArXivPDFHTML

Papers citing "How to Escape Saddle Points Efficiently"

18 / 468 papers shown
Title
A Generic Approach for Escaping Saddle points
A Generic Approach for Escaping Saddle points
Sashank J. Reddi
Manzil Zaheer
S. Sra
Barnabás Póczós
Francis R. Bach
Ruslan Salakhutdinov
Alex Smola
21
83
0
05 Sep 2017
Natasha 2: Faster Non-Convex Optimization Than SGD
Natasha 2: Faster Non-Convex Optimization Than SGD
Zeyuan Allen-Zhu
ODL
28
245
0
29 Aug 2017
Second-Order Optimization for Non-Convex Machine Learning: An Empirical
  Study
Second-Order Optimization for Non-Convex Machine Learning: An Empirical Study
Peng Xu
Farbod Roosta-Khorasani
Michael W. Mahoney
ODL
24
143
0
25 Aug 2017
Newton-Type Methods for Non-Convex Optimization Under Inexact Hessian
  Information
Newton-Type Methods for Non-Convex Optimization Under Inexact Hessian Information
Peng Xu
Farbod Roosta-Khorasani
Michael W. Mahoney
34
210
0
23 Aug 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex
  Optimization
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
36
200
0
20 Jul 2017
Generalization Bounds of SGLD for Non-convex Learning: Two Theoretical
  Viewpoints
Generalization Bounds of SGLD for Non-convex Learning: Two Theoretical Viewpoints
Wenlong Mou
Liwei Wang
Xiyu Zhai
Kai Zheng
MLT
21
154
0
19 Jul 2017
Theoretical insights into the optimization landscape of
  over-parameterized shallow neural networks
Theoretical insights into the optimization landscape of over-parameterized shallow neural networks
Mahdi Soltanolkotabi
Adel Javanmard
Jason D. Lee
36
415
0
16 Jul 2017
Are Saddles Good Enough for Deep Learning?
Are Saddles Good Enough for Deep Learning?
Adepu Ravi Sankar
V. Balasubramanian
43
5
0
07 Jun 2017
Deep Learning is Robust to Massive Label Noise
Deep Learning is Robust to Massive Label Noise
David Rolnick
Andreas Veit
Serge J. Belongie
Nir Shavit
NoLa
36
550
0
30 May 2017
Gradient Descent Can Take Exponential Time to Escape Saddle Points
Gradient Descent Can Take Exponential Time to Escape Saddle Points
S. Du
Chi Jin
Jason D. Lee
Michael I. Jordan
Barnabás Póczós
Aarti Singh
24
244
0
29 May 2017
On the diffusion approximation of nonconvex stochastic gradient descent
On the diffusion approximation of nonconvex stochastic gradient descent
Junyang Qian
C. J. Li
Lei Li
Jianguo Liu
DiffM
31
24
0
22 May 2017
Matrix Completion and Related Problems via Strong Duality
Matrix Completion and Related Problems via Strong Duality
Maria-Florina Balcan
Yingyu Liang
David P. Woodruff
Hongyang R. Zhang
29
8
0
27 Apr 2017
On the Gap Between Strict-Saddles and True Convexity: An Omega(log d)
  Lower Bound for Eigenvector Approximation
On the Gap Between Strict-Saddles and True Convexity: An Omega(log d) Lower Bound for Eigenvector Approximation
Max Simchowitz
A. Alaoui
Benjamin Recht
23
13
0
14 Apr 2017
Geometry of Factored Nuclear Norm Regularization
Geometry of Factored Nuclear Norm Regularization
Qiuwei Li
Zhihui Zhu
Gongguo Tang
13
24
0
05 Apr 2017
No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified
  Geometric Analysis
No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis
Rong Ge
Chi Jin
Yi Zheng
56
434
0
03 Apr 2017
Convergence Results for Neural Networks via Electrodynamics
Convergence Results for Neural Networks via Electrodynamics
Rina Panigrahy
Sushant Sachdeva
Qiuyi Zhang
MLT
MDE
32
22
0
01 Feb 2017
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
139
1,205
0
16 Aug 2016
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
186
1,186
0
30 Nov 2014
Previous
123...1089