Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.00887
Cited By
How to Escape Saddle Points Efficiently
2 March 2017
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to Escape Saddle Points Efficiently"
50 / 468 papers shown
Title
Deep Neural Networks with Multi-Branch Architectures Are Less Non-Convex
Hongyang R. Zhang
Junru Shao
Ruslan Salakhutdinov
39
14
0
06 Jun 2018
Structured Local Optima in Sparse Blind Deconvolution
Yuqian Zhang
Han-Wen Kuo
John N. Wright
26
56
0
01 Jun 2018
Understanding Generalization and Optimization Performance of Deep CNNs
Pan Zhou
Jiashi Feng
MLT
33
48
0
28 May 2018
Multichannel Sparse Blind Deconvolution on the Sphere
Yanjun Li
Y. Bresler
17
16
0
26 May 2018
How Much Restricted Isometry is Needed In Nonconvex Matrix Recovery?
Richard Y. Zhang
C. Josz
Somayeh Sojoudi
Javad Lavaei
22
42
0
25 May 2018
Adaptive Stochastic Gradient Langevin Dynamics: Taming Convergence and Saddle Point Escape Time
Hejian Sang
Jia-Wei Liu
ODL
21
1
0
23 May 2018
Improved Learning of One-hidden-layer Convolutional Neural Networks with Overlaps
S. Du
Surbhi Goel
MLT
30
17
0
20 May 2018
The Global Optimization Geometry of Shallow Linear Neural Networks
Zhihui Zhu
Daniel Soudry
Yonina C. Eldar
M. Wakin
ODL
23
36
0
13 May 2018
Are ResNets Provably Better than Linear Predictors?
Ohad Shamir
19
54
0
18 Apr 2018
On Gradient-Based Learning in Continuous Games
Eric Mazumdar
Lillian J. Ratliff
S. Shankar Sastry
27
134
0
16 Apr 2018
Stability and Convergence Trade-off of Iterative Optimization Algorithms
Yuansi Chen
Chi Jin
Bin Yu
8
93
0
04 Apr 2018
Tight Query Complexity Lower Bounds for PCA via Finite Sample Deformed Wigner Law
Max Simchowitz
A. Alaoui
Benjamin Recht
35
39
0
04 Apr 2018
Non-Convex Matrix Completion Against a Semi-Random Adversary
Yu Cheng
Rong Ge
AAML
36
24
0
28 Mar 2018
On the Local Minima of the Empirical Risk
Chi Jin
Lydia T. Liu
Rong Ge
Michael I. Jordan
FedML
16
56
0
25 Mar 2018
Bayesian Optimization with Expensive Integrands
Saul Toscano-Palmerin
P. Frazier
27
49
0
23 Mar 2018
Gradient Descent with Random Initialization: Fast Global Convergence for Nonconvex Phase Retrieval
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
6
235
0
21 Mar 2018
Escaping Saddles with Stochastic Gradients
Hadi Daneshmand
Jonas Köhler
Aurelien Lucchi
Thomas Hofmann
29
162
0
15 Mar 2018
How to Start Training: The Effect of Initialization and Architecture
Boris Hanin
David Rolnick
19
253
0
05 Mar 2018
Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow
Xiao Zhang
S. Du
Quanquan Gu
26
24
0
03 Mar 2018
On the Power of Over-parametrization in Neural Networks with Quadratic Activation
S. Du
Jason D. Lee
27
267
0
03 Mar 2018
The Anisotropic Noise in Stochastic Gradient Descent: Its Behavior of Escaping from Sharp Minima and Regularization Effects
Zhanxing Zhu
Jingfeng Wu
Ting Yu
Lei Wu
Jin Ma
11
40
0
01 Mar 2018
Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form
Srinadh Bhojanapalli
Nicolas Boumal
Prateek Jain
Praneeth Netrapalli
29
44
0
01 Mar 2018
On the Sublinear Convergence of Randomly Perturbed Alternating Gradient Descent to Second Order Stationary Solutions
Songtao Lu
Mingyi Hong
Zhengdao Wang
13
4
0
28 Feb 2018
Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Estimation
Yudong Chen
Yuejie Chi
18
171
0
23 Feb 2018
Stochastic Variance-Reduced Cubic Regularization for Nonconvex Optimization
Zhe Wang
Yi Zhou
Yingbin Liang
Guanghui Lan
35
47
0
20 Feb 2018
An Alternative View: When Does SGD Escape Local Minima?
Robert D. Kleinberg
Yuanzhi Li
Yang Yuan
MLT
14
314
0
17 Feb 2018
Stochastic Variance-Reduced Cubic Regularized Newton Method
Dongruo Zhou
Pan Xu
Quanquan Gu
ODL
16
45
0
13 Feb 2018
Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator
Maryam Fazel
Rong Ge
Sham Kakade
M. Mesbahi
35
597
0
15 Jan 2018
Generalization Error Bounds for Noisy, Iterative Algorithms
Ankit Pensia
Varun Jog
Po-Ling Loh
29
109
0
12 Jan 2018
Non-convex Optimization for Machine Learning
Prateek Jain
Purushottam Kar
33
479
0
21 Dec 2017
Third-order Smoothness Helps: Even Faster Stochastic Optimization Algorithms for Finding Local Minima
Yaodong Yu
Pan Xu
Quanquan Gu
11
3
0
18 Dec 2017
Saving Gradient and Negative Curvature Computations: Finding Local Minima More Efficiently
Yaodong Yu
Difan Zou
Quanquan Gu
21
10
0
11 Dec 2017
NEON+: Accelerated Gradient Methods for Extracting Negative Curvature for Non-Convex Optimization
Yi Tian Xu
Rong Jin
Tianbao Yang
35
25
0
04 Dec 2017
Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima
S. Du
Jason D. Lee
Yuandong Tian
Barnabás Póczós
Aarti Singh
MLT
32
235
0
03 Dec 2017
Accelerated Gradient Descent Escapes Saddle Points Faster than Gradient Descent
Chi Jin
Praneeth Netrapalli
Michael I. Jordan
ODL
37
261
0
28 Nov 2017
Asymptotic Analysis via Stochastic Differential Equations of Gradient Descent Algorithms in Statistical and Computational Paradigms
Yazhen Wang
16
17
0
27 Nov 2017
Run-and-Inspect Method for Nonconvex Optimization and Global Optimality Bounds for R-Local Minimizers
Yifan Chen
Yuejiao Sun
W. Yin
30
5
0
22 Nov 2017
Neon2: Finding Local Minima via First-Order Oracles
Zeyuan Allen-Zhu
Yuanzhi Li
21
130
0
17 Nov 2017
Stochastic Cubic Regularization for Fast Nonconvex Optimization
Nilesh Tripuraneni
Mitchell Stern
Chi Jin
Jeffrey Regier
Michael I. Jordan
27
173
0
08 Nov 2017
Model-free Nonconvex Matrix Completion: Local Minima Analysis and Applications in Memory-efficient Kernel PCA
Ji Chen
Xiaodong Li
48
27
0
06 Nov 2017
Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap
Aryan Mokhtari
S. Hassani
Amin Karbasi
27
70
0
05 Nov 2017
First-order Stochastic Algorithms for Escaping From Saddle Points in Almost Linear Time
Yi Tian Xu
Rong Jin
Tianbao Yang
ODL
27
116
0
03 Nov 2017
Learning One-hidden-layer Neural Networks with Landscape Design
Rong Ge
Jason D. Lee
Tengyu Ma
MLT
29
260
0
01 Nov 2017
Gradient Sparsification for Communication-Efficient Distributed Optimization
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
15
522
0
26 Oct 2017
First-order Methods Almost Always Avoid Saddle Points
Jason D. Lee
Ioannis Panageas
Georgios Piliouras
Max Simchowitz
Michael I. Jordan
Benjamin Recht
ODL
95
83
0
20 Oct 2017
The Scaling Limit of High-Dimensional Online Independent Component Analysis
Chuang Wang
Yue M. Lu
6
13
0
15 Oct 2017
On Noisy Negative Curvature Descent: Competing with Gradient Descent for Faster Non-convex Optimization
Mingrui Liu
Tianbao Yang
38
23
0
25 Sep 2017
Nonconvex Low-Rank Matrix Recovery with Arbitrary Outliers via Median-Truncated Gradient Descent
Yuanxin Li
Yuejie Chi
Huishuai Zhang
Yingbin Liang
24
29
0
23 Sep 2017
When is a Convolutional Filter Easy To Learn?
S. Du
Jason D. Lee
Yuandong Tian
MLT
15
130
0
18 Sep 2017
The Impact of Local Geometry and Batch Size on Stochastic Gradient Descent for Nonconvex Problems
V. Patel
MLT
28
8
0
14 Sep 2017
Previous
1
2
3
...
10
8
9
Next