Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.00887
Cited By
How to Escape Saddle Points Efficiently
2 March 2017
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to Escape Saddle Points Efficiently"
50 / 468 papers shown
Title
Second-Order Convergence in Private Stochastic Non-Convex Optimization
Youming Tao
Zuyuan Zhang
Dongxiao Yu
Xiuzhen Cheng
Falko Dressler
Di Wang
12
0
0
21 May 2025
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
G. Zhang
S. Fattahi
Richard Y. Zhang
49
36
0
13 Apr 2025
Exploring Energy Landscapes for Minimal Counterfactual Explanations: Applications in Cybersecurity and Beyond
Spyridon Evangelatos
Eleni Veroni
Vasilis Efthymiou
Christos Nikolopoulos
Georgios Th. Papadopoulos
Panagiotis G. Sarigiannidis
AAML
39
0
0
23 Mar 2025
A Near Complete Nonasymptotic Generalization Theory For Multilayer Neural Networks: Beyond the Bias-Variance Tradeoff
Hao Yu
Xiangyang Ji
AI4CE
60
0
0
03 Mar 2025
Langevin Multiplicative Weights Update with Applications in Polynomial Portfolio Management
Yi-Hu Feng
Tianlin Li
Tian Xie
62
0
0
26 Feb 2025
k
k
k
-SVD with Gradient Descent
Emily Gan
Yassir Jedra
Devavrat Shah
68
0
0
01 Feb 2025
SSE-SAM: Balancing Head and Tail Classes Gradually through Stage-Wise SAM
Xingyu Lyu
Qianqian Xu
Zhiyong Yang
Shaojie Lyu
Qingming Huang
89
0
0
18 Dec 2024
Stability properties of gradient flow dynamics for the symmetric low-rank matrix factorization problem
Hesameddin Mohammadi
Mohammad Tinati
Stephen Tu
Mahdi Soltanolkotabi
M. Jovanović
78
0
0
24 Nov 2024
A new Input Convex Neural Network with application to options pricing
Vincent Lemaire
Gilles Pagès
Christian Yeo
74
0
0
19 Nov 2024
Attribute Inference Attacks for Federated Regression Tasks
Francesco Diana
Othmane Marfoq
Chuan Xu
Giovanni Neglia
F. Giroire
Eoin Thomas
AAML
273
1
0
19 Nov 2024
Complexity-Aware Training of Deep Neural Networks for Optimal Structure Discovery
Valentin Frank Ingmar Guenter
Athanasios Sideris
CVBM
26
0
0
14 Nov 2024
SPGD: Steepest Perturbed Gradient Descent Optimization
Amir M. Vahedi
Horea T. Ilies
35
1
0
07 Nov 2024
MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning
Suning Huang
Zheyu Zhang
Tianhai Liang
Yihan Xu
Zhehao Kou
Chenhao Lu
Guowei Xu
Zhengrong Xue
Huazhe Xu
MoE
49
2
0
19 Oct 2024
Loss Landscape Characterization of Neural Networks without Over-Parametrization
Rustem Islamov
Niccolò Ajroldi
Antonio Orvieto
Aurelien Lucchi
45
4
0
16 Oct 2024
On-the-fly Modulation for Balanced Multimodal Learning
Yake Wei
D. Hu
Henghui Du
Zhicheng Dou
34
7
0
15 Oct 2024
Learning to Optimize for Mixed-Integer Non-linear Programming
Bo Tang
Elias Boutros Khalil
Ján Drgoňa
42
2
0
14 Oct 2024
Adaptive Batch Size for Privately Finding Second-Order Stationary Points
Daogao Liu
Kunal Talwar
215
0
0
10 Oct 2024
Noise is All You Need: Private Second-Order Convergence of Noisy SGD
Dmitrii Avdiukhin
Michael Dinitz
Chenglin Fan
G. Yaroslavtsev
39
1
0
09 Oct 2024
Addax: Utilizing Zeroth-Order Gradients to Improve Memory Efficiency and Performance of SGD for Fine-Tuning Language Models
Zeman Li
Xinwei Zhang
Peilin Zhong
Yuan Deng
Meisam Razaviyayn
Vahab Mirrokni
27
2
0
09 Oct 2024
ℓ
1
\ell_1
ℓ
1
-norm rank-one symmetric matrix factorization has no spurious second-order stationary points
Jiewen Guan
Anthony Man-Cho So
44
2
0
07 Oct 2024
Super Level Sets and Exponential Decay: A Synergistic Approach to Stable Neural Network Training
J. Chaudhary
Dipak Nidhi
J. Heikkonen
H. Merisaari
R. Kanth
31
0
0
25 Sep 2024
On the Hardness of Meaningful Local Guarantees in Nonsmooth Nonconvex Optimization
Guy Kornowski
Swati Padmanabhan
Ohad Shamir
229
0
0
16 Sep 2024
A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval
Adarsh Barik
Anand Krishna
Vincent Y. F. Tan
18
0
0
07 Sep 2024
Smoothed Robust Phase Retrieval
Zhong Zheng
Lingzhou Xue
37
2
0
03 Sep 2024
Automatically Adaptive Conformal Risk Control
Vincent Blot
Anastasios Nikolas Angelopoulos
Michael I Jordan
Nicolas Brunel
AI4CE
46
2
0
25 Jun 2024
Stable Minima Cannot Overfit in Univariate ReLU Networks: Generalization by Large Step Sizes
Dan Qiao
Kaiqi Zhang
Esha Singh
Daniel Soudry
Yu-Xiang Wang
NoLa
41
3
0
10 Jun 2024
Concurrent Training and Layer Pruning of Deep Neural Networks
Valentin Frank Ingmar Guenter
Athanasios Sideris
3DPC
45
3
0
06 Jun 2024
A Global Geometric Analysis of Maximal Coding Rate Reduction
Peng Wang
Huikang Liu
Druv Pai
Yaodong Yu
Zhihui Zhu
Q. Qu
Yi Ma
44
7
0
04 Jun 2024
Prospects of Privacy Advantage in Quantum Machine Learning
Jamie Heredge
Niraj Kumar
Dylan Herman
Shouvanik Chakrabarti
Romina Yalovetzky
Shree Hari Sureshbabu
Changhao Li
Marco Pistoia
39
4
0
14 May 2024
Improving Trainability of Variational Quantum Circuits via Regularization Strategies
Jun Zhuang
Jack Cunningham
Chaowen Guan
43
4
0
02 May 2024
Accelerated Fully First-Order Methods for Bilevel and Minimax Optimization
Chris Junchi Li
59
0
0
01 May 2024
Efficient algorithms for regularized Poisson Non-negative Matrix Factorization
Nathanael Perraudin
Adrien Teutrie
Cécile Hébert
G. Obozinski
35
1
0
25 Apr 2024
cuFastTuckerPlus: A Stochastic Parallel Sparse FastTucker Decomposition Using GPU Tensor Cores
Zixuan Li
Mingxing Duan
Huizhang Luo
Wangdong Yang
KenLi Li
Keqin Li
34
0
0
15 Apr 2024
3D Gaussian Splatting as Markov Chain Monte Carlo
Shakiba Kheradmand
Daniel Rebain
Gopal Sharma
Weiwei Sun
Jeff Tseng
Hossam N. Isack
Abhishek Kar
Andrea Tagliasacchi
Kwang Moo Yi
3DGS
55
49
0
15 Apr 2024
Preventing Model Collapse in Gaussian Process Latent Variable Models
Ying Li
Zhidi Lin
Feng Yin
Michael Minyi Zhang
VLM
37
1
0
02 Apr 2024
Robust Second-Order Nonconvex Optimization and Its Application to Low Rank Matrix Sensing
Shuyao Li
Yu Cheng
Ilias Diakonikolas
Jelena Diakonikolas
Rong Ge
Stephen J. Wright
49
2
0
12 Mar 2024
Beyond Single-Model Views for Deep Learning: Optimization versus Generalizability of Stochastic Optimization Algorithms
Toki Tahmid Inan
Mingrui Liu
Amarda Shehu
36
0
0
01 Mar 2024
Training-set-free two-stage deep learning for spectroscopic data de-noising
Dongchen Huang
Junde Liu
Tian Qian
Hongming Weng
36
0
0
29 Feb 2024
Escaping Local Optima in Global Placement
Ke Xue
Xi Lin
Yunqi Shi
Shixiong Kai
Siyuan Xu
Chao Qian
18
2
0
28 Feb 2024
LoRA Training in the NTK Regime has No Spurious Local Minima
Uijeong Jang
Jason D. Lee
Ernest K. Ryu
44
14
0
19 Feb 2024
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Zhengqing Wu
Berfin Simsek
Francois Ged
ODL
53
0
0
08 Feb 2024
Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape
Juno Kim
Taiji Suzuki
28
19
0
02 Feb 2024
Accelerating Distributed Stochastic Optimization via Self-Repellent Random Walks
Jie Hu
Vishwaraj Doshi
Do Young Eun
55
2
0
18 Jan 2024
Avoiding strict saddle points of nonconvex regularized problems
Luwei Bai
Yaohua Hu
Hao Wang
Xiaoqi Yang
13
0
0
17 Jan 2024
Guaranteed Nonconvex Factorization Approach for Tensor Train Recovery
Zhen Qin
M. Wakin
Zhihui Zhu
45
5
0
05 Jan 2024
Fed-QSSL: A Framework for Personalized Federated Learning under Bitwidth and Data Heterogeneity
Yiyue Chen
H. Vikalo
C. Wang
FedML
49
5
0
20 Dec 2023
Adam-like Algorithm with Smooth Clipping Attains Global Minima: Analysis Based on Ergodicity of Functional SDEs
Keisuke Suzuki
29
0
0
29 Nov 2023
The Local Landscape of Phase Retrieval Under Limited Samples
Kaizhao Liu
Zihao Wang
Lei Wu
22
2
0
26 Nov 2023
High Probability Guarantees for Random Reshuffling
Hengxu Yu
Xiao Li
47
2
0
20 Nov 2023
Using Stochastic Gradient Descent to Smooth Nonconvex Functions: Analysis of Implicit Graduated Optimization with Optimal Noise Scheduling
Naoki Sato
Hideaki Iiduka
30
3
0
15 Nov 2023
1
2
3
4
...
8
9
10
Next