Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.00887
Cited By
How to Escape Saddle Points Efficiently
2 March 2017
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to Escape Saddle Points Efficiently"
50 / 468 papers shown
Title
On the Second-Order Convergence of Biased Policy Gradient Algorithms
Siqiao Mu
Diego Klabjan
50
2
0
05 Nov 2023
Online Non-convex Optimization with Long-term Non-convex Constraints
Shijie Pan
Wenjie Huang
26
0
0
04 Nov 2023
Riemannian stochastic optimization methods avoid strict saddle points
Ya-Ping Hsieh
Mohammad Reza Karimi
Andreas Krause
P. Mertikopoulos
43
5
0
04 Nov 2023
Escaping Saddle Points in Heterogeneous Federated Learning via Distributed SGD with Communication Compression
Sijin Chen
Zhize Li
Yuejie Chi
FedML
46
5
0
29 Oct 2023
Optimization Landscape of Policy Gradient Methods for Discrete-time Static Output Feedback
Jingliang Duan
Jie Li
Xuyang Chen
Kai Zhao
Shengbo Eben Li
Lin Zhao
24
5
0
29 Oct 2023
A randomized algorithm for nonconvex minimization with inexact evaluations and complexity guarantees
Shuyao Li
Stephen J. Wright
30
3
0
28 Oct 2023
Optimal Transport for Treatment Effect Estimation
Hao Wang
Zhichao Chen
Jiajun Fan
Haoxuan Li
Tianqiao Liu
Weiming Liu
Quanyu Dai
Yichao Wang
Zhenhua Dong
Ruiming Tang
OT
CML
30
35
0
27 Oct 2023
Neural Collapse in Multi-label Learning with Pick-all-label Loss
Pengyu Li
Xiao Li
Yutong Wang
Qing Qu
35
8
0
24 Oct 2023
Series of Hessian-Vector Products for Tractable Saddle-Free Newton Optimisation of Neural Networks
E. T. Oldewage
Ross M. Clarke
José Miguel Hernández-Lobato
ODL
30
1
0
23 Oct 2023
Stochastic Optimization for Non-convex Problem with Inexact Hessian Matrix, Gradient, and Function
Liu Liu
Xuanqing Liu
Cho-Jui Hsieh
Dacheng Tao
26
3
0
18 Oct 2023
On Unsupervised Image-to-image translation and GAN stability
BahaaEddin AlAila
Zahra Jandaghi
Abolfazl Farahani
M. Al-Saad
GAN
27
1
0
18 Oct 2023
Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning and Autoregression
Adam Block
Dylan J. Foster
Akshay Krishnamurthy
Max Simchowitz
Cyril Zhang
35
4
0
17 Oct 2023
Over-the-Air Federated Learning and Optimization
Jingyang Zhu
Yuanming Shi
Yong Zhou
Chunxiao Jiang
Wei Chen
Khaled B. Letaief
FedML
28
11
0
16 Oct 2023
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
20
9
0
09 Oct 2023
CoNO: Complex Neural Operator for Continuous Dynamical Systems
Karn Tiwari
N. M. A. Krishnan
P. PrathoshA
30
1
0
03 Oct 2023
How Over-Parameterization Slows Down Gradient Descent in Matrix Sensing: The Curses of Symmetry and Initialization
Nuoya Xiong
Lijun Ding
Simon S. Du
48
12
0
03 Oct 2023
Are Graph Neural Networks Optimal Approximation Algorithms?
Morris Yau
Eric Lu
Nikolaos Karalias
Jessica Xu
Stefanie Jegelka
35
1
0
01 Oct 2023
On the different regimes of Stochastic Gradient Descent
Antonio Sclocchi
Matthieu Wyart
33
18
0
19 Sep 2023
A Gentle Introduction to Gradient-Based Optimization and Variational Inequalities for Machine Learning
Neha S. Wadia
Yatin Dandi
Michael I. Jordan
AI4CE
14
0
0
09 Sep 2023
Max-affine regression via first-order methods
Seonho Kim
Kiryung Lee
33
2
0
15 Aug 2023
On Neural Network approximation of ideal adversarial attack and convergence of adversarial training
Rajdeep Haldar
Qifan Song
AAML
31
0
0
30 Jul 2023
Minimizing robust density power-based divergences for general parametric density models
Akifumi Okuno
34
2
0
11 Jul 2023
Accelerating Inexact HyperGradient Descent for Bilevel Optimization
Hai-Long Yang
Luo Luo
C. J. Li
Michael I. Jordan
36
13
0
30 Jun 2023
Curvature-Independent Last-Iterate Convergence for Games on Riemannian Manifolds
Yong Cai
Michael I. Jordan
Tianyi Lin
Argyris Oikonomou
Emmanouil-Vasileios Vlatakis-Gkaragkounis
38
4
0
29 Jun 2023
Near-Optimal Nonconvex-Strongly-Convex Bilevel Optimization with Fully First-Order Oracles
Le‐Yu Chen
Yaohua Ma
J.N. Zhang
88
2
0
26 Jun 2023
Bootstrapped Representations in Reinforcement Learning
Charline Le Lan
Stephen Tu
Mark Rowland
Anna Harutyunyan
Rishabh Agarwal
Marc G. Bellemare
Will Dabney
OffRL
OOD
SSL
79
10
0
16 Jun 2023
Symmetry & Critical Points for Symmetric Tensor Decomposition Problems
Yossi Arjevani
Gal Vinograd
39
5
0
13 Jun 2023
Understanding Predictive Coding as an Adaptive Trust-Region Method
Francesco Innocenti
Ryan Singh
Christopher L. Buckley
25
0
0
29 May 2023
Accelerated Methods for Riemannian Min-Max Optimization Ensuring Bounded Geometric Penalties
David Martínez-Rubio
Christophe Roux
Christopher Criscitiello
Sebastian Pokutta
24
6
0
25 May 2023
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
36
6
0
25 May 2023
Stability and Convergence of Distributed Stochastic Approximations with large Unbounded Stochastic Information Delays
Adrian Redder
Arunselvan Ramaswamy
Holger Karl
25
1
0
11 May 2023
Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning
Yulai Zhao
Zhuoran Yang
Zhaoran Wang
Jason D. Lee
48
3
0
08 May 2023
A Cubic-regularized Policy Newton Algorithm for Reinforcement Learning
Mizhaan Prajit Maniyar
Akash Mondal
Prashanth L.A.
S. Bhatnagar
51
0
0
21 Apr 2023
Simulated Annealing in Early Layers Leads to Better Generalization
Amirm. Sarfi
Zahra Karimpour
Muawiz Chaudhary
N. Khalid
Mirco Ravanelli
Sudhir Mudur
Eugene Belilovsky
AI4CE
CLL
23
7
0
10 Apr 2023
Learning Rate Schedules in the Presence of Distribution Shift
Matthew Fahrbach
Adel Javanmard
Vahab Mirrokni
Pratik Worah
29
6
0
27 Mar 2023
Greedy Pruning with Group Lasso Provably Generalizes for Matrix Sensing
Nived Rajaraman
Devvrit
Aryan Mokhtari
Kannan Ramchandran
29
0
0
20 Mar 2023
Convergence Analysis of Stochastic Gradient Descent with MCMC Estimators
Tian-cheng Li
Fan Chen
Huajie Chen
Zaiwen Wen
18
4
0
19 Mar 2023
Can Learning Be Explained By Local Optimality In Robust Low-rank Matrix Recovery?
Jianhao Ma
S. Fattahi
36
1
0
21 Feb 2023
Private (Stochastic) Non-Convex Optimization Revisited: Second-Order Stationary Points and Excess Risks
Arun Ganesh
Daogao Liu
Sewoong Oh
Abhradeep Thakurta
ODL
34
13
0
20 Feb 2023
Almost Sure Saddle Avoidance of Stochastic Gradient Methods without the Bounded Gradient Assumption
Jun Liu
Ye Yuan
ODL
19
1
0
15 Feb 2023
Efficient displacement convex optimization with particle gradient descent
Hadi Daneshmand
Jason D. Lee
Chi Jin
29
5
0
09 Feb 2023
Stochastic Dimension-reduced Second-order Methods for Policy Optimization
Jinsong Liu
Chen Xie
Qinwen Deng
Dongdong Ge
Yi-Li Ye
32
1
0
28 Jan 2023
An SDE for Modeling SAM: Theory and Insights
Enea Monzio Compagnoni
Luca Biggio
Antonio Orvieto
F. Proske
Hans Kersting
Aurelien Lucchi
35
13
0
19 Jan 2023
A Newton-CG based augmented Lagrangian method for finding a second-order stationary point of nonconvex equality constrained optimization with complexity guarantees
Chuan He
Zhaosong Lu
Ting Kei Pong
11
7
0
09 Jan 2023
A Dynamics Theory of Implicit Regularization in Deep Low-Rank Matrix Factorization
JIAN-PENG Cao
Chao Qian
Yihui Huang
Dicheng Chen
Yuncheng Gao
Jiyang Dong
D. Guo
X. Qu
26
1
0
29 Dec 2022
Escaping Saddle Points for Effective Generalization on Class-Imbalanced Data
Harsh Rangwani
Sumukh K Aithal
Mayank Mishra
R. Venkatesh Babu
33
29
0
28 Dec 2022
Plateau-reduced Differentiable Path Tracing
Michael Fischer
Tobias Ritschel
26
9
0
30 Nov 2022
Escaping From Saddle Points Using Asynchronous Coordinate Gradient Descent
Marco Bornstein
Jin-Peng Liu
Jingling Li
Furong Huang
23
0
0
17 Nov 2022
Neural Langevin Dynamics: towards interpretable Neural Stochastic Differential Equations
Simon Koop
M. Peletier
J. Portegies
Vlado Menkovski
DiffM
35
1
0
17 Nov 2022
Passage-Mask: A Learnable Regularization Strategy for Retriever-Reader Models
Shujian Zhang
Chengyue Gong
Xingchao Liu
RALM
53
6
0
02 Nov 2022
Previous
1
2
3
4
5
...
8
9
10
Next