Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.05755
Cited By
v1
v2
v3
v4 (latest)
Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
18 October 2016
Nicolas Papernot
Martín Abadi
Ulfar Erlingsson
Ian Goodfellow
Kunal Talwar
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data"
50 / 353 papers shown
Title
Key Protected Classification for Collaborative Learning
Mert Bulent Sariyildiz
R. G. Cinbis
Erman Ayday
49
10
0
27 Aug 2019
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
179
4,584
0
21 Aug 2019
That which we call private
Ulfar Erlingsson
Ilya Mironov
A. Raghunathan
Shuang Song
73
26
0
08 Aug 2019
Local Differential Privacy for Deep Learning
Pathum Chamikara Mahawaga Arachchige
P. Bertók
I. Khalil
Dongxi Liu
S. Çamtepe
Mohammed Atiquzzaman
110
225
0
08 Aug 2019
Privately Answering Classification Queries in the Agnostic PAC Model
Anupama Nandi
Raef Bassily
107
26
0
31 Jul 2019
A Federated Learning Approach for Mobile Packet Classification
Evita Bakopoulou
Bálint Tillman
A. Markopoulou
62
30
0
30 Jul 2019
A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection
Yue Liu
Zeyi Wen
Zhaomin Wu
Sixu Hu
Naibo Wang
Yuan N. Li
Xu Liu
Bingsheng He
FedML
130
1,015
0
23 Jul 2019
Neural Epitome Search for Architecture-Agnostic Network Compression
Daquan Zhou
Xiaojie Jin
Qibin Hou
Kaixin Wang
Jianchao Yang
Jiashi Feng
91
13
0
12 Jul 2019
Making AI Forget You: Data Deletion in Machine Learning
Antonio A. Ginart
M. Guan
Gregory Valiant
James Zou
MU
112
481
0
11 Jul 2019
On the Privacy Risks of Model Explanations
Reza Shokri
Martin Strobel
Yair Zick
MIACV
PILM
SILM
FAtt
129
38
0
29 Jun 2019
DP-LSSGD: A Stochastic Optimization Method to Lift the Utility in Privacy-Preserving ERM
Bao Wang
Quanquan Gu
M. Boedihardjo
Farzin Barekat
Stanley J. Osher
129
25
0
28 Jun 2019
Prediction Poisoning: Towards Defenses Against DNN Model Stealing Attacks
Tribhuvanesh Orekondy
Bernt Schiele
Mario Fritz
AAML
83
167
0
26 Jun 2019
G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators
Yunhui Long
Wei Ping
Zhuolin Yang
B. Kailkhura
Aston Zhang
C.A. Gunter
Yue Liu
122
74
0
21 Jun 2019
Trade-offs and Guarantees of Adversarial Representation Learning for Information Obfuscation
Han Zhao
Jianfeng Chi
Yuan Tian
Geoffrey J. Gordon
MIACV
51
2
0
19 Jun 2019
Membership Privacy for Machine Learning Models Through Knowledge Transfer
Virat Shejwalkar
Amir Houmansadr
88
10
0
15 Jun 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
204
504
0
12 Jun 2019
Interpretable and Differentially Private Predictions
Frederik Harder
Matthias Bauer
Mijung Park
FAtt
74
53
0
05 Jun 2019
SoK: Differential Privacies
Damien Desfontaines
Balázs Pejó
163
126
0
04 Jun 2019
Towards Fair and Privacy-Preserving Federated Deep Models
Lingjuan Lyu
Jiangshan Yu
Karthik Nandakumar
Yitong Li
Xingjun Ma
Jiong Jin
Han Yu
Kee Siong Ng
FedML
43
20
0
04 Jun 2019
P3SGD: Patient Privacy Preserving SGD for Regularizing Deep CNNs in Pathological Image Classification
Bingzhe Wu
Shiwan Zhao
Guangyu Sun
Xiaolu Zhang
Zhong Su
C. Zeng
Zhihong Liu
73
41
0
30 May 2019
Differentially Private Learning with Adaptive Clipping
Galen Andrew
Om Thakkar
H. B. McMahan
Swaroop Ramaswamy
FedML
108
344
0
09 May 2019
MixMatch: A Holistic Approach to Semi-Supervised Learning
David Berthelot
Nicholas Carlini
Ian Goodfellow
Nicolas Papernot
Avital Oliver
Colin Raffel
235
3,051
0
06 May 2019
Mimic Learning to Generate a Shareable Network Intrusion Detection Model
Ahmed A. Shafee
Mohamed Baza
Douglas A. Talbert
M. Fouda
Mahmoud Nabil
Mohamed Mahmoud
77
29
0
02 May 2019
Privacy-preserving Active Learning on Sensitive Data for User Intent Classification
Oluwaseyi Feyisetan
Thomas Drake
Borja Balle
Tom Diethe
52
11
0
26 Mar 2019
One-Shot Federated Learning
Neel Guha
Ameet Talwalkar
Virginia Smith
FedML
67
219
0
28 Feb 2019
Evaluating Differentially Private Machine Learning in Practice
Bargav Jayaraman
David Evans
147
7
0
24 Feb 2019
Differentially Private Continual Learning
Sebastian Farquhar
Y. Gal
FedML
MU
50
12
0
18 Feb 2019
Privacy Preserving Off-Policy Evaluation
Tengyang Xie
Philip S. Thomas
G. Miklau
OffRL
46
4
0
01 Feb 2019
Representation Transfer for Differentially Private Drug Sensitivity Prediction
Teppo Niinimaki
Mikko A. Heikkilä
Antti Honkela
Samuel Kaski
OOD
16
8
0
29 Jan 2019
Bayesian Differential Privacy for Machine Learning
Aleksei Triastcyn
Boi Faltings
78
2
0
28 Jan 2019
Differentially Private Generative Adversarial Networks for Time Series, Continuous, and Discrete Open Data
Lorenzo Frigerio
Anderson Santana de Oliveira
L. Gomez
Patrick Duverger
SyDa
AI4TS
90
109
0
08 Jan 2019
Application-driven Privacy-preserving Data Publishing with Correlated Attributes
A. Rezaei
Chaowei Xiao
Jie Gao
Yue Liu
Sirajum Munir
48
14
0
26 Dec 2018
A General Approach to Adding Differential Privacy to Iterative Training Procedures
H. B. McMahan
Galen Andrew
Ulfar Erlingsson
Steve Chien
Ilya Mironov
Nicolas Papernot
Peter Kairouz
104
193
0
15 Dec 2018
No Peek: A Survey of private distributed deep learning
Praneeth Vepakomma
Tristan Swedish
Ramesh Raskar
O. Gupta
Abhimanyu Dubey
SyDa
FedML
83
100
0
08 Dec 2018
MEAL: Multi-Model Ensemble via Adversarial Learning
Zhiqiang Shen
Zhankui He
Xiangyang Xue
AAML
FedML
88
147
0
06 Dec 2018
Differentially Private Data Generative Models
Qingrong Chen
Chong Xiang
Minhui Xue
Yue Liu
Nikita Borisov
Dali Kaafar
Haojin Zhu
SyDa
AAML
80
79
0
06 Dec 2018
Split learning for health: Distributed deep learning without sharing raw patient data
Praneeth Vepakomma
O. Gupta
Tristan Swedish
Ramesh Raskar
FedML
125
713
0
03 Dec 2018
The Power of The Hybrid Model for Mean Estimation
Brendan Avent
Yatharth Dubey
Aleksandra Korolova
98
17
0
29 Nov 2018
An overview of deep learning in medical imaging focusing on MRI
A. Lundervold
A. Lundervold
OOD
112
1,655
0
25 Nov 2018
Faster CryptoNets: Leveraging Sparsity for Real-World Encrypted Inference
Edward Chou
Josh Beal
Daniel Levy
Serena Yeung
Albert Haque
Li Fei-Fei
67
200
0
25 Nov 2018
Differential Private Stack Generalization with an Application to Diabetes Prediction
Quanming Yao
Xiawei Guo
James T. Kwok
Wei-Wei Tu
Yuqiang Chen
Wenyuan Dai
Qiang Yang
28
19
0
23 Nov 2018
Private Selection from Private Candidates
Jingcheng Liu
Kunal Talwar
74
134
0
19 Nov 2018
How to Use Heuristics for Differential Privacy
Seth Neel
Aaron Roth
Zhiwei Steven Wu
76
26
0
19 Nov 2018
Private Model Compression via Knowledge Distillation
Ji Wang
Weidong Bao
Lichao Sun
Xiaomin Zhu
Bokai Cao
Philip S. Yu
FedML
78
120
0
13 Nov 2018
A generic framework for privacy preserving deep learning
Wenbo Guo
Yunzhe Tao
Morten Dahl
Sui Huang
Masashi Sugiyama
Daniel Rueckert
Lin Lin
FedML
115
438
0
09 Nov 2018
Private Machine Learning in TensorFlow using Secure Computation
Morten Dahl
Jason V. Mancuso
Yann Dupis
Ben Decoste
Morgan Giraud
Ian Livingstone
Justin Patriquin
Gavin Uhma
FedML
72
78
0
18 Oct 2018
Deep Reinforcement Learning
Yuxi Li
VLM
OffRL
194
144
0
15 Oct 2018
Distributed learning of deep neural network over multiple agents
O. Gupta
Ramesh Raskar
FedML
OOD
144
613
0
14 Oct 2018
Privado: Practical and Secure DNN Inference with Enclaves
Karan Grover
Shruti Tople
Shweta Shinde
Ranjita Bhagwan
Ramachandran Ramjee
FedML
SILM
72
46
0
01 Oct 2018
Deep Learning Towards Mobile Applications
Ji Wang
Bokai Cao
Philip S. Yu
Lichao Sun
Weidong Bao
Xiaomin Zhu
HAI
87
99
0
10 Sep 2018
Previous
1
2
3
4
5
6
7
8
Next