Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.05755
Cited By
v1
v2
v3
v4 (latest)
Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
18 October 2016
Nicolas Papernot
Martín Abadi
Ulfar Erlingsson
Ian Goodfellow
Kunal Talwar
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data"
50 / 353 papers shown
Title
SoK: Differential Privacy on Graph-Structured Data
Tamara T. Mueller
Dmitrii Usynin
Johannes C. Paetzold
Daniel Rueckert
Georgios Kaissis
88
15
0
17 Mar 2022
Securing the Classification of COVID-19 in Chest X-ray Images: A Privacy-Preserving Deep Learning Approach
W. Boulila
Adel Ammar
Bilel Benjdira
Anis Koubaa
61
13
0
15 Mar 2022
A review of Generative Adversarial Networks for Electronic Health Records: applications, evaluation measures and data sources
Ghadeer O. Ghosheh
Jin Li
T. Zhu
97
42
0
14 Mar 2022
HDPView: Differentially Private Materialized View for Exploring High Dimensional Relational Data
Fumiyuki Kato
Tsubasa Takahashi
Shun Takagi
Yang Cao
Seng Pei Liew
Masatoshi Yoshikawa
55
6
0
14 Mar 2022
One Parameter Defense -- Defending against Data Inference Attacks via Differential Privacy
Dayong Ye
Sheng Shen
Tianqing Zhu
B. Liu
Wanlei Zhou
MIACV
68
66
0
13 Mar 2022
Differential Privacy Amplification in Quantum and Quantum-inspired Algorithms
Armando Angrisani
Mina Doosti
E. Kashefi
87
12
0
07 Mar 2022
Differentially Private Label Protection in Split Learning
Xin Yang
Jiankai Sun
Yuanshun Yao
Junyuan Xie
Chong-Jun Wang
FedML
114
36
0
04 Mar 2022
Faking feature importance: A cautionary tale on the use of differentially-private synthetic data
Oscar Giles
Kasra Hosseini
Grigorios Mingas
Oliver Strickson
Louise A. Bowler
...
A. Heppenstall
N. Lomax
N. Malleson
Martin O'Reilly
Sebastian Vollmerteke
98
8
0
02 Mar 2022
GAP: Differentially Private Graph Neural Networks with Aggregation Perturbation
Sina Sajadmanesh
Ali Shahin Shamsabadi
A. Bellet
D. Gática-Pérez
85
67
0
02 Mar 2022
Does Label Differential Privacy Prevent Label Inference Attacks?
Ruihan Wu
Jinfu Zhou
Kilian Q. Weinberger
Chuan Guo
59
16
0
25 Feb 2022
Individualized PATE: Differentially Private Machine Learning with Individual Privacy Guarantees
Franziska Boenisch
Christopher Muhl
Roy Rinberg
Jannis Ihrig
Adam Dziedzic
79
18
0
21 Feb 2022
PPA: Preference Profiling Attack Against Federated Learning
Chunyi Zhou
Yansong Gao
Anmin Fu
Kai Chen
Zhiyang Dai
Zhi-Li Zhang
Minhui Xue
Yuqing Zhang
AAML
67
23
0
10 Feb 2022
Locally Differentially Private Distributed Deep Learning via Knowledge Distillation
Di Zhuang
Mingchen Li
Jerome Chang
FedML
36
2
0
07 Feb 2022
Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation
Wenxiao Wang
Alexander Levine
Soheil Feizi
AAML
89
60
0
05 Feb 2022
Differentially Private Graph Classification with GNNs
Tamara T. Mueller
Johannes C. Paetzold
Chinmay Prabhakar
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
95
22
0
05 Feb 2022
Lessons from the AdKDD'21 Privacy-Preserving ML Challenge
Eustache Diemert
Romain Fabre
Alexandre Gilotte
Fei Jia
Basile Leparmentier
Jérémie Mary
Zhonghua Qu
Ugo Tanielian
Hui Yang
80
6
0
31 Jan 2022
Syfer: Neural Obfuscation for Private Data Release
Adam Yala
Victor Quach
H. Esfahanizadeh
Rafael G. L. DÓliveira
K. Duffy
Muriel Médard
Tommi Jaakkola
Regina Barzilay
PICV
130
7
0
28 Jan 2022
Increasing the Cost of Model Extraction with Calibrated Proof of Work
Adam Dziedzic
Muhammad Ahmad Kaleem
Y. Lu
Nicolas Papernot
FedML
MIACV
AAML
MLAU
130
29
0
23 Jan 2022
Survey on Federated Learning Threats: concepts, taxonomy on attacks and defences, experimental study and challenges
Nuria Rodríguez-Barroso
Daniel Jiménez López
M. V. Luzón
Francisco Herrera
Eugenio Martínez-Cámara
FedML
85
229
0
20 Jan 2022
Submix: Practical Private Prediction for Large-Scale Language Models
Antonio A. Ginart
Laurens van der Maaten
James Zou
Chuan Guo
87
23
0
04 Jan 2022
Which Student is Best? A Comprehensive Knowledge Distillation Exam for Task-Specific BERT Models
Made Nindyatama Nityasya
Haryo Akbarianto Wibowo
Rendi Chevi
Radityo Eko Prasojo
Alham Fikri Aji
80
6
0
03 Jan 2022
Financial Vision Based Differential Privacy Applications
Jun-Hao Chen
Yi-Jen Wang
Yun-Cheng Tsai
Samuel Yen-Chi Chen
FedML
43
1
0
28 Dec 2021
DP-UTIL: Comprehensive Utility Analysis of Differential Privacy in Machine Learning
Ismat Jarin
Birhanu Eshete
AAML
69
10
0
24 Dec 2021
When the Curious Abandon Honesty: Federated Learning Is Not Private
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
110
188
0
06 Dec 2021
Public Data-Assisted Mirror Descent for Private Model Training
Ehsan Amid
Arun Ganesh
Rajiv Mathews
Swaroop Indra Ramaswamy
Shuang Song
Thomas Steinke
Vinith Suriyakumar
Om Thakkar
Abhradeep Thakurta
96
51
0
01 Dec 2021
Node-Level Differentially Private Graph Neural Networks
Ameya Daigavane
Gagan Madan
Aditya Sinha
Abhradeep Thakurta
Gaurav Aggarwal
Prateek Jain
80
59
0
23 Nov 2021
Decentralized Federated Learning through Proxy Model Sharing
Shivam Kalra
Junfeng Wen
Jesse C. Cresswell
M. Volkovs
Hamid R. Tizhoosh
FedML
99
101
0
22 Nov 2021
Don't Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence
Tianshi Cao
Alex Bie
Arash Vahdat
Sanja Fidler
Karsten Kreis
SyDa
DiffM
89
72
0
01 Nov 2021
SEDML: Securely and Efficiently Harnessing Distributed Knowledge in Machine Learning
Yansong Gao
Qun Li
Yifeng Zheng
Guohong Wang
Jiannan Wei
Mang Su
83
3
0
26 Oct 2021
Mitigating Membership Inference Attacks by Self-Distillation Through a Novel Ensemble Architecture
Xinyu Tang
Saeed Mahloujifar
Liwei Song
Virat Shejwalkar
Milad Nasr
Amir Houmansadr
Prateek Mittal
69
80
0
15 Oct 2021
AHEAD: Adaptive Hierarchical Decomposition for Range Query under Local Differential Privacy
L. Du
Zhikun Zhang
Shaojie Bai
Changchang Liu
S. Ji
Peng Cheng
Jiming Chen
142
38
0
14 Oct 2021
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
262
373
0
13 Oct 2021
Robin Hood and Matthew Effects: Differential Privacy Has Disparate Impact on Synthetic Data
Georgi Ganev
Bristena Oprisanu
Emiliano De Cristofaro
139
58
0
23 Sep 2021
Releasing Graph Neural Networks with Differential Privacy Guarantees
Iyiola E. Olatunji
Thorben Funke
Megha Khosla
118
47
0
18 Sep 2021
Privacy-Preserving Machine Learning: Methods, Challenges and Directions
Runhua Xu
Nathalie Baracaldo
J. Joshi
88
106
0
10 Aug 2021
DarkGAN: Exploiting Knowledge Distillation for Comprehensible Audio Synthesis with GANs
J. Nistal
Stefan Lattner
G. Richard
78
9
0
03 Aug 2021
Generative Models for Security: Attacks, Defenses, and Opportunities
L. A. Bauer
Vincent Bindschaedler
110
4
0
21 Jul 2021
Data synthesis and adversarial networks: A review and meta-analysis in cancer imaging
Richard Osuala
Kaisar Kushibar
Lidia Garrucho
Akis Linardos
Zuzanna Szafranowska
Stefan Klein
Ben Glocker
Oliver Díaz
Karim Lekadir
MedIm
104
45
0
20 Jul 2021
Private Graph Data Release: A Survey
Yang D. Li
M. Purcell
Thierry Rakotoarivelo
David B. Smith
Thilina Ranbaduge
K. S. Ng
106
26
0
09 Jul 2021
DTGAN: Differential Private Training for Tabular GANs
A. Kunar
Robert Birke
Zilong Zhao
L. Chen
66
11
0
06 Jul 2021
Survey: Leakage and Privacy at Inference Time
Marija Jegorova
Chaitanya Kaul
Charlie Mayor
Alison Q. OÑeil
Alexander Weir
Roderick Murray-Smith
Sotirios A. Tsaftaris
PILM
MIACV
113
76
0
04 Jul 2021
Large Scale Private Learning via Low-rank Reparametrization
Da Yu
Huishuai Zhang
Wei Chen
Jian Yin
Tie-Yan Liu
87
106
0
17 Jun 2021
An Analysis of the Deployment of Models Trained on Private Tabular Synthetic Data: Unexpected Surprises
Mayana Pereira
Meghana Kshirsagar
Soumendu Sundar Mukherjee
Rahul Dodhia
J. L. Ferres
95
9
0
15 Jun 2021
Hermite Polynomial Features for Private Data Generation
Margarita Vinaroz
Mohammad-Amin Charusaie
Frederik Harder
Kamil Adamczewski
Mijung Park
111
25
0
09 Jun 2021
PEARL: Data Synthesis via Private Embeddings and Adversarial Reconstruction Learning
Seng Pei Liew
Tsubasa Takahashi
Michihiko Ueno
FedML
76
29
0
08 Jun 2021
Antipodes of Label Differential Privacy: PATE and ALIBI
Mani Malek
Ilya Mironov
Karthik Prasad
I. Shilov
Florian Tramèr
71
66
0
07 Jun 2021
Information Theoretic Evaluation of Privacy-Leakage, Interpretability, and Transferability for Trustworthy AI
Mohit Kumar
Bernhard A. Moser
Lukas Fischer
B. Freudenthaler
89
1
0
06 Jun 2021
Honest-but-Curious Nets: Sensitive Attributes of Private Inputs Can Be Secretly Coded into the Classifiers' Outputs
Mohammad Malekzadeh
Anastasia Borovykh
Deniz Gündüz
MIACV
87
42
0
25 May 2021
Differentially Private Federated Knowledge Graphs Embedding
Hao Peng
Haoran Li
Yangqiu Song
V. Zheng
Jianxin Li
FedML
90
85
0
17 May 2021
Differentially Private Transferrable Deep Learning with Membership-Mappings
Mohit Kumar
61
9
0
10 May 2021
Previous
1
2
3
4
5
6
7
8
Next